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Abstract. In this paper, it is shown firstly that the onerénsional (1-D) generalized
logistic map obtained on the basis of a generaligistic function for population
growth has originally a discrete dynamical propeRsom the 1-D exact chaos solution,
2-D and 3-D chaos maps including the Mandelbrot muiagh the Julia map in terms of
real variables are derived, and 2-D maps relateledHenon map, the Lorenz map and
the Helleman map are obtained. Finally, a 2-D chmap and the fractal set constructed
from a 1-D exact chaos solution are consideredh®iphysical analogue of snow crystal,
and nonlinear dynamics on the fractal set are dig by iterating numerically the 2-D
map.
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1 Introduction

For the study of nonlinear phenomena, it is knoWwat tsimplest nonlinear
difference equations have arisen in the field oldgical, economic and social
sciences, and possess a rich spectrum of dynabgtavior as chaos in many
respects [1-3]. A population growth is modeled aspacial example, and has
been afforded by the nonlinear difference equatialied the logistic map.
Particularly, for one-dimensional (1-D) chaos mapbijfurcation diagram of the
two parameter quadratic family has been observgdafd the self-adjusting
logistic map with a slowly changing parameter mdihave been considered [5].
Moreover, the logistic map with a periodically mtated parameter has been
presented [6]. In the meantime, various chaotizierges have been proposed
for the generation of pseudo-random numbers, amdtHe application to
cryptosystems [7-9].

At the same time, a family of shapes and many dathegular patterns in nature
called fractals has been discussed for the geamedpresentation, as an
irregular set consisting of parts similar to theokeh[10-12]. However, since the
Mandelbrot map is defined as a complex map, itbeen pointed out that the
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physics of fractals is a research subject to ba ft#]. In addition, chaotic and

fractal dynamics have been expanded to experimafsérvations with the

mathematical models [14], and fractal compressias been presented to
compress images using fractals [15]. Recently, rssttaoction method of 3-D

chaos maps has been proposed, and the fractaliietghysical analogue have
been shown numerically [16].

In this paper, we derive a generalized logistic rfram a generalized logistic

function for population growth, and discuss the atyital behavior of the map
in Section 2. Then, by introducing the 1-D exadahsolution, we construct 2-
D and 3-D chaos maps including the Mandelbrot nmapthe Julia map in terms
of real variables, and 2-D maps related to the Hemnap, the Lorenz map and
the Helleman map are obtained in Section 3. Fipall2-D chaos map and the
fractal set are considered for the physical anaogfli snow crystal, and

nonlinear dynamics on the fractal set are discubgeiterating the 2-D map in

Section 4. The last Section is devoted to conchssio

2 A Generalized Logistic Map

Firstly, we introduce a generalized logistic funotP(t) as

P)= " +d, &)

with the timet>0, real constants 4% 0,b>0,c#0,d =0}, and a constant

population growth ternd. By differentiating (1), we have the first order
differential equation;

dP_ e P[("’1+ 20d) _ P} ~(%)a+ba), (2)
dt a b a
and by a variable transformation;
X =p/ 29, 3)
and the difference method;
%:M, n= 012, 4)
dt At

with X = X(t) and the time stept >0, we find

X~ X, _, bc, a+2bd bcd , a+bd
n+ n = X A-X)- . (5)
L2 =CEE0X,0-X,) (ad)(a+2bd)
Then, by the variable transformation;
X, = (By/ AX,, ()

with A=1+At(c/a)(a+2bd) and B, =At(c/a)(a+ 2bd), we arrive at a 1-D



generalized logistic map [16];

Xa = A% A-X) +B, 7
here
A51+M(m), (8)
a
B " bc?d(a +bd)(At)? | ©)
ala+ c(a+ 2bd)(At)]

which gives a discrete nonlinear systemd K 0 in (8) and (9), then (7) yields
the logistic mapx ,, = Ax, (L - x,) » and the map & = 4.0 has an exact chaos

n+l
solution x =sin?(C2") With a real constanC #+my7/2 and finite positive
integers {, m}. We call the mapx ., = 4x_ (1-x,) the kernel chaos map of (7).

Therefore, the constaitin (7) denotes a coefficient of the nonlinear teamcl
B corresponds to the constant population growth tah(1).

It is interesting to note that the logistic functibas been introduced for the
population growth of city in a discussion of theatete numerical data [17], and
has found an application to the field of such awldgy, ecology,
biomathematics, economics, probability and stasstiTherefore, the function
(1) has originally a discrete property for popwatigrowth, that is, a discrete
nonlinear dynamics.

3 2-D and 3-D Chaos Maps

We have the following three cases to find 2-D afid 8haos maps from a 1-D
exact chaos solution:

Case 1

From an exact chaos solution;

X, =sin*(C2") (10)
with Cz+mm/2 and finite positive integers|{ m} to the logistic map
X.., = 4x, (1-x,), we have, by introducing a real parametet 0, as

X ,, = 4cos’ (C2")sin*(C2")
= 4(1-a Yo (C 2")sin*(C2") + 4a cog (C 2" )sin*(C2")
=4(1-a)x, (1—-x ) +4a(x, —sin*(C2"))
=4x, - M1-a)x; - 4ay, (11)
with
y, =sin*(C2"). (12)



Therefore, we get a 2-D kernel chaos map from (10):
Xpa = 4%, = A= a)x; —4ay,, (13)
Yoo = 160-X)*Y,, (14)
and a generalized 2-D chaos map, according todhstimction method [16], as
X =8 (%, — L-0)X; —ay,) +h, (15)
Yoa =8, (L=X,)°Y, +b,, (16)

with real coefficients and constants; {a,, bs, bo}. Here, the first equation (15)
has the same form as the Helleman map;

Xpa = 28X, +2X =Y, 117
yn+1 = Xn! (18)
with a real coefficiens, which has been obtained from the motion of aqurat

a storage ring with periodic impulses [18].
Moreover, from the exact chaos solution (10), we tihe following 3-D map;

X ., = (2cosC2")sin(C2"))?

= @yz.)% (19)

with
y, =cos(C2"), (20)
z, =sin(C2"), (21)

and have a 3-D kernel chaos map from (19)-(21) as

X, = 4% Y2, (22)
yn+1 = ys - Xn’ (23)
Zn+l = 2 ynZn ) (24)

Therefore, we get a generalized 3-D chaos map;

X0 = &XYr +hy, (25)
yn+1:a2(y§_xn)+b2' (26)
Z, = &Y,Z, +by, (27)



which has been discussed in [16], whewma, {a;, as, bi, by, b3} are real
coefficients and constants.

Case 2

For an exact chaos solution;

X, = cos(C2"), (28)
we have the following derivation by introducingeak parametety # 0 as

X ,, =cog(C2") —sin*(C2")
=cos(C2") - (1-a)sin*(C2") —asin*(C2")
=—a+(1+a)os(C2")-(@1-a)y,, (29)
with
y, =sin’(C2"). (30)

Then, from (28)-(30), we obtain the kernel chaop @s

X = =0 + 1+ 0)%; - L-Q)Y,, (31)
You = 4%V, (32)

and a generalized 2-D chaos map;

X =& (-a+@+a)x - (A-a)y,) +h, (33)
Yo = 8X, Y, +hy, (34)

with real coefficients and constanta {a,, b1, by}, where the first equation (33)
has the same form as the Henon map [19];

Xy =1-aX + Y, (35)

You =X, (36)
with real coefficients §, b}, which has been introduced as a simplified madel
the Poincare section of the Lorenz model, and mwknas one of the most

studied maps for dynamical systems.
Here, it is interesting to note that if we defipe = sin(c2") with a =0 in (29),

we find a generalized 2-D chaos map;

Xou =8 (¢ —y7) +h, (37)
Yo = &XY, 0, (38)



where the case of{, a, b1, by)=(1.0, 2.0, Yo) or (1.0, 2.0k, ko) with initial
values o, Yo} and real parameter{, ko} corresponds to the Mandelbrot map
or the Julia map in terms of real variables, respely [16].

Case 3

Similarly, for another exact chaos solution;

X, =sin(C2"), (39)
we have the following derivation;

X.., =2c0sC2")sin(C2"),
X ., =2(cog(C2") —sin®(C2"))x

n+1

= 2>(n+1 (1_ 2X§)’ (40)
Xna1 = 2Xn (1_ 2yn)1 (41)
with
yn = Xr?—l' (42)

Then, we find a 2-D kernel chaos map from (41) @#%) as

Xn+1 = 2Xn (1_ 2yn)1 (43)
yn+1 = Xr?’ (44)

and a generalized 2-D chaos map;

Xn+l = a:l_(xn - 2Xnyn) + bl! (45)
Yo = &%, +b,, (46)

with real coefficients and constanta;{ay, bi, by}. It is interesting to note that
the first equation (45) has the same form as tBel&renz map [20, 21];

X, = (+ab)x, —bxy,, (47)
Yo =DX + (1= D)y, 48]

with real coefficients 4, b}, which is known to have chaotic dynamics.

Thus, it is found that the 2-D chaos maps derivexinf 1-D exact chaos
solutions (10), (28) and (39) include the Manddilonap and the Julia map, and
are related to the Helleman map, the Henon maptl@d-D Lorenz map,
which give chaotic behaviors and nonlinear dynamics



4 Nonlinear Dynamicsfor Snow Crystal

According to the approach presented in Section 8,imroduce a 1-D exact
chaos solution;

X, =cos(C6"), of4
to the kernel chaos map;

Xner = T (X0 Y0, (50)
with

y, =sin(C6"), 1§5

X2 +yr=1, (52)

and find a generalized 2-D chaos map as

Xpur = 84(X) —15XY2 +15X2Yn — yr) + Ky, (53)
Yo =8, (6XY, —205Y; +6X,Y7) + Ky, (54)

with real coefficients and constant®; {ay, ki, ka}.
Then, the fractal set is defined by

M ={x, Yo OR [limx,,y, <od}, (55)

where o, Yo} are initial values, and the fractal sets arestitated in Figure 1,

which depend on the constant parametkrsk}. The fractal set (a) of Figure 1
gives a circle under the condition (52), and ())dleow how the fractal set (a)
grows as a physical analogue toward a natural ssrgstal (f), which is a six-

cornered dendrite-type depending on the temperance the saturation in
environment [22, 23]. Here, for calculating thected setM, we introduce an

iteration humbem=300 to obtain each element bf under the convergence
condition x2 + y2 < 40 for the map (53) and (54), and the numerical datmn

software MATLAB.
Each fractal set illustrated in Figure 1 is a skindtial value point ko, Yo)

defined by (55) under the conditigd + y2 < 4,0. For nonlinear dynamics of the

2-D chaos map (53) and (54), orbits of, (yn) governed by the map are
calculated and shown on the fractal set of init@les in Figure 2, where (a);
n=0, 1 illustrates orbits from each initial poim,(yo) to the &, y1), (b); n=0, 1,
2, 3 from fo, Yo) to (X3, ¥3), and (c);n=0, 1, ..., 5 fromXp, Yo) to (xs, ¥s), for all
the initial points. It is found that the orbits am@mplex, and seem like colleding
of water molecules. Here, the orbits show that w&eehf,, y:) as the case of
n=0 from (53);x1:=f(Xo, Yo)+ki and (54)y1=g(Xo, Yo)+kz, (X2, y2) from



n
T

(@) @, @, ki, k2)=(1.0, 1.0, 0.0, 0.0) (l|n( a2, ki, k2)=(1.0, 1.0, 0.1, 0.1)

(c) (au, az, ki, k2)=(1.0, 1.0, 0.3, 0.3) (Ba( @z, ki, k2)=(1.0, 1.0, 0.5, 0.5)

(e) (@, @z, ki, k) ) fatural snow crystal [23]
=(1.0, 1.0, 0.58158, 0.58158)

Fig. 1. Fractal sets of then{53) and (54) for snow crystal.
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1, 2, 3, 4, 5 and of a small framed region.

(c) Orbits for=0,

0, 1, 2, 3, 4, 5 given by the map (53) &b

on the fractal set (Figure 1 (e)).

Fig. 2. Orbits of X, yn) with n



Xo=f(x1, y1)+ki andyi=g(xo, Yo)+k, ..., and Xsoo, Y300 from Xao=f(Xz99, Y2909)+k1
and Yso=g(Xees Y2e9)tke, under the condition? +y2 < 40. Then, we get one

element of the fractal set, and find thati{§/1), (X2, ¥2), ..., &so0 Y300} are other
initial value points satisfying the conditiga + y2 < 40 for the fractal set.

Thus, if the orbits shown in Figure 2 correspondtite dynamics of water
molecules colliding with other ones in natural snenystal, the map (53) and
(54) may present the discrete nonlinear dynamics.

Conclusions

We have derived firstly the 1-D generalized logistiap, and have discussed
that the map has originally a discrete numericapprty for population growth
of city. Then, from the 1-D chaos solution, 2-D maplated to the Henon map,
the 2-D Lorenz map and the Helleman map, which ltéra®tic dynamics, have
been derived. Furthermore, the 2-D chaos map {&3)%4) gives the fractal set
for snow crystal, and orbits of the map on thetfithset have been numerically
calculated. As a result, it is found that the 24iaa@s maps derived from 1-D
exact chaos solutions have discrete nonlinear digsamand may express
physical analogues with chaotic property as physics

The authors would like to thank Prof. C. V. Tao fiig encouragement, and Mr.
N. A. Hao for his numerical calculation at Univéysof Science, Ho Chi Minh
City.

References

1. R. M. May. Biological populations with non-ovapbing generations: Stable points,
stable cycles, and cha@&ciencel5: 645-646, 1974.

2. T. Y. Liand J. A. Yorke. Period three implidsaos.American Mathematics Monthly
82: 985-992, 1975.

3. R. M. May. Simple mathematical models with vegmplicated dynamicdNature
261: 459-467, 1976.

4. E. Barreto, B. R. Hunt, C. Grebogi and J. A. RérFrom high dimensional chaos to
stable periodic orbits: The structure of paramsfsce Phys. Rev. Let{78 : 4561-
4564, 1997.

5. P. Melby, J. Kaidel, N. Weber and A. Hubler. Atiion to the edge of chaos in the
self-adjusting logistic mag?hys. Rev. LetB4: 5991-5993, 2000.

6. T. U. Singh, A. Nandi and R. Ramaswamy. Coeaxistattractors in periodically
modulated logistic map&hys. RevE77: 066217, 2008.

7. L. M. Pecora and T. L. Carroll. Synchronizatiorchaos system®hys. Rev. Let64:
821-824, 1990.

8. G. Perez and H. A. Cerdeira. Extracting messagsked by chaofhys. Rev. Lett.
74:1970-1973, 1995.

9. G. D. V. Wiggeren and R. Roy. Optical commurniaratvith chaotic waveformd$hys.
Rev. Lett81: 3547-3550, 1998.

10. B. B. MandelbrofThe Fractal Geometry of NaturEreeman, San Francisco, 1982.



11. H. Peitgen and P. Richtd@he Beauty of FractalSpringer, New York, 1986.

12. H. Peitgen, H. Jurgens and D. Sa@jieaos and Fractals — New Frontiers of Science.
Springer, New York, 1992.

13. L. P. Kadanoff. Where’s the physid2f?ys. Today9: 6-7, 1986.

14. F. C. MoonChaotic and Fractal Dynamic#Viley, New York, 1992.

15. M. F. BarnsleyFractals EverywhereAcademic Press, New York, 1993.

16. N. T. Nhien, D. V. Liet and S. Kawamoto. Thidimensional chaos maps and fractal
sets with physical analogueroc. of CHAOS2014337-347, Lisbon, Portugal, 2014.
17. P. F. Verhulst. Mathematical researches inéoldlv of population growth increase.
Nouveaux Memoires de I'Academie Royale des SciepteBelles—Lettres de

Bruxelles18: 1-42, 1845.

18. R. H. G. Helleman. Self-generated chaotic biginain nonlinear mechanics.
Fundamental Problems in Statistical Mechani& 165-233, North-Holland,
Amsterdam, 1980.

19. M. Henon. A two-dimensional mapping with a sra attractorCommunications in
Mathematical Physic§0: 69-77, 1976.

20. H. P. Fang and B. L. Hao. Symbolic dynamicsth& Lorenz equationghaos,
Solitons and Fractal3: 217-246, 1996.

21. D. N. Deleanu. On the selective synchronizatibrsome dynamical systems that
exhibit chaosProc. of CHAOS20141-90, Lisbon, Portugal, 2014.

22. C. A. Reiter. A local cellular model for snowystal growth.Chaos, Solitons and
Fractals23: 1111-1119, 2005.

23. http://lwww.snowcrystals.net/gallarylsm/indemht






