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Preface 
13th Chaotic Modeling and Simulation  

International Conference  
 

9 – 12 June 2020 
 

It is our pleasure to welcome the guests, participants and contributors to 

the 13th International Conference (CHAOS2020) on Chaotic Modeling, 

Simulation and Applications. We support the study of nonlinear systems 

and dynamics in an interdisciplinary research field and very interesting 

applications will be presented. We intend to provide a widely selected 

forum to exchange ideas, methods, and techniques in the field of 

Nonlinear Dynamics, Chaos, Fractals and their applications in General 

Science and in Engineering Sciences.  

The principal aim of CHAOS2020 International Conference is to expand 

the development of the theories of the applied nonlinear field, the 

methods and the empirical data and computer techniques, and the best 

theoretical achievements of chaotic theory as well.  

Chaotic Modeling and Simulation Conferences continue to grow 

considerably from year to year thus making a well established platform 

to present and disseminate new scientific findings and interesting 

applications.  

We thank all the contributors to the success of this conference and 

especially the authors of this Proceedings Volume. Special thanks to the 

Plenary, Keynote and Invited Presentations, the Scientific Committee, 

the ISAST Committee, Yiannis Dimotikalis and Aris Meletiou and the 

web supporting team, the Conference Secretary Eleni Molfesi and all the 

members of the Secretariat. 

 

November 2020             

 

Christos H. Skiadas,  

Conference Chair 
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Higgs boson and Higgs field in fractal models of the 
Universe: active femtoobjects, new Hubble constants, 

solar wind, heliopause 
 

Valeriy S. Abramov 

 
Donetsk Institute for Physics and Engineering named after A.A. Galkin, Ukraine 
(E-mail: vsabramov2018@gmail.com) 
 
Abstract. Theoretically the relationship between the main parameters of active 
femtoobjects and the Higgs boson in fractal models of the Universe was investigated. To 
describe the structure of the solar wind, heliopause, new Hubble constants are proposed. 
Estimates of the main parameters are conformed with the experimental data obtained by 
the Planck space observatory (based on Fermi-LAT and Cerenkov telescopes), UTR-2 
and URAN-2 radio telescopes, Parker Solar Probe, Voyager 2 and Voyager 1. Within the 
framework of the anisotropic model, a description of the main characteristics of the 
model femtoobject and its relationships with the parameters of the Higgs boson and the 
Higgs field was performed. To take into account the stochastic behavior of the 
parameters of a model femtoobject (an active object with dimensions of the order of the 
classical electron radius), random variables are introduced. Using the example of a 
hydrogen atom, we estimated the radius of a proton, its mean square deviation, and 
compared it with an experiment. Estimates of the anomalous contributions to the 
magnetic moments of leptons based on the lepton quantum number are obtained. 
Keywords: model femtoobject, Higgs boson and Higgs field, fractal models of the 
Universe, Hubble constants, structure of the solar wind, heliopause, hydrogen atom, 
proton and electron radii, magnetic moments of leptons. 
 
1  Introduction 
 
To describe fractal cosmological objects (using binary black holes and neutron 
stars as an example), the model was proposed in [1, 2] that takes into account 
the relation between the parameters of the Higgs boson and relict photons, 
gravitons. Within the framework of this model, the possibility of radiation of 
gravitational waves from such cosmological objects in the superradiation regime 
is shown [2]. Higgs field accounting made it possible to propose an anisotropic 
model of fractal cosmology, within the framework of which it is possible to 
describe the effect of accelerated expansion of the Universe [3]. In this case, a 
transition to the description of atomic defects, active nanoobjects, and neutrinos 
is possible [4, 5]. Active objects in fractal quantum systems have their own 
characteristic features of behavior [6 - 8]. In this case, superradiative states of 
active objects may appear [7]. When describing various physical fields 
(gravitational, electromagnetic, neutrino, deformation, stress) in fractal quantum 
systems, it is necessary to take into account the ordering effect of the 
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corresponding operators [8]. Coherent laser spectroscopy methods and the 
modern development of nanotechnology make it possible to study active 
femtoobjects (protons, neutrons, atomic and muon hydrogens, leptons) in fractal 
quantum systems. Estimates of the characteristic sizes for the proton radius and 
Rydberg constant in atomic and muon hydrogens were obtained in [9–11]. Note 
that active femtoobjects such as leptons have anomalies in magnetic properties 
[12 - 14]. For neutrinos, the effect of oscillations (mutual transformations of the 
electron, muon neutrino and τ-neutrino into each other) is observed [13]. 
The relationships between the Higgs boson parameters and active nanoelements 
in fractal systems were studied in [15–17]. Features of the behavior of coupled 
states of a vortex–antivortex pair were considered in [16]. In [17], the 
description of the relations of the Higgs boson parameters with cosmological 
objects in the Universe was proposed. For the accelerated expansion of the 
Universe, within the framework of this model [17], the relationships of the 
Hubble constant (old value) with the parameters of the Higgs boson and relict 
radiation were obtained. The experimental data on the attenuation of gamma 
rays against an intergalactic background, obtained by the Planck space 
observatory (based on Fermi-LAT and Cerenkov telescopes), made it possible to 
determine new values of the Hubble constant and the density of matter in the 
Universe [18]. The authors explain these new values by the interaction of γ rays 

with relic photons. In this case, it becomes necessary to agreement the old and 
new values of the Hubble constants both within the framework of our model and 
with the cosmological model ɅCDM (plane cosmology). On the other hand, 
experimental data on the compound, structure, and behavior of the solar wind 
(flows of various particles) near the Sun [19 – 24], Earth [25] and in interstellar 
space (near the heliopause) [26 – 30] should also be associated with new values 
of the Hubble constant, the expansion rate, and the density of matter in the 
Universe. 
The aim of this work is to describe the main characteristics of active 
femtoobjects, the solar wind, heliopause and their relationships with the 
parameters of the Higgs boson and the Higgs field in fractal models of the 
Universe. 
 
2  Description of model femtoobject 
 
The compound of the solar wind may include active nanoobjects [4 - 7] and 
femtoobjects. Based on the results of [1, 2, 4 - 7], we introduce the main parameters 

2 p , 0A , pr   of a model femtoobject 

2 0 / 1 / ( )p F pn N N      ;   0 0 0/A A e Hn E E  ;   2 / ( )p e Fr r z n ,     (1) 

which are related with the known parameters of quantum electrodynamics 
2 2

0/( )e er e m c ;  0 0c e e  ;  0 0e e   ;  2
0 0/c e  ;  2 2

0 /e e eE m c e r  ; 

2
0 / /p e e p pr m r m e E  ; 2 2

0 0/p p pE m c e r  ; /2B ee m  ; /2N pe m  .  (2) 
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Here er  and 0 pr , em  and pm , eE  and pE  are classical radii, rest masses, rest 

energies for electron and proton, respectively; 0c  is limited speed of light in 

vacuum;  is Planck's constant; e  is electron charge; 0  is fine structure constant; 

0e  is renormalized electron charge; B  is Bohr magneton; N is nuclear 

magneton. Next we will use the numerical values 0.51099907МeVeE  , 

/ 1836.152701p em m  , 938.2723226МeVpE  , 2.81794092fmer  , 

0 1.534698568аmpr  . Note that in this work, model femtoobjects are active 

objects with sizes of the order of the classical electron radius er . Model attoobjects 

with sizes of the order of the classical proton radius 0 pr  describe the internal 

structure of nucleons (the presence of a core and scalar, vector clouds [12]). In 
fractal quantum systems (such as atomic and muon hydrogen), model attoobjects 
can lead to a change in the main parameters (1), anomalies in magnetic properties 
(2) and stochastic behavior [8] of model femtoobjects and leptons. In our model, the 
main parameters of the model femtoobject are related to the resting energy of the 
Higgs boson 0HE , the main parameter 0An  for black holes [1, 2], the number of 

quanta Fn , Fn  of the fermionic field ( 1F Fn n  ) from the anisotropic model 

(taking into account the presence of the Higgs field) [3], and the cosmological 
redshift z  [1, 2], the effective susceptibility 0  in the absence of the Higgs field 

[4–7] and the effective number N  in the Dicke superradiation model [2]. The 
numerical values of these parameters are: 0 125.03238GeVHE  , 

0 58.04663887An  , 0.945780069Fn  , 0.054219931Fn  , 7.18418108z  , 

0 0.257104198  , 17.0073101N . Using formulas (1), we find the numerical 

values of the main parameters of the model femtoobject 2 4.741876161p  , 

6
0 237.232775 10A

   , 0.829458098fmpr   and 17.21819709pN   . 

To take into account the stochastic behavior of the parameters of the model 

femtoobject, we introduce a random variable ˆ
rp  with two possible values 1p , 

2 p  and their corresponding probabilities 1pP , 2 pP , and expected value 

ˆ( ) 1rpM   . Based on the parameters 2 p , 0A  from (1) we find the probabilities 

1pP , 2 pP , possible value 1p , variance ˆ( )rpD  , standard deviation ˆ( )rp   

1 2 2 0/ ( )p p p AP    ;   2 0 2 0/ ( )p A p AP    ;   1 2 1p pP P  ; 

1 2 2 1(1 )/p p p pP P   ;  2
2 1 1 2

ˆ( ) ( )rp p p p pD P P    ;  1/2ˆ ˆ( ) ( )rp rpD   .   (3) 

The values of these parameters from (3) are equal: 1 0.999949973pP  , 

6
2 50.02710pP   , 1 0.999812796p  , 6ˆ( ) 700.49510rpD    , ˆ( ) 0.026466865rp   . 
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Next, we introduce a random variable ˆˆp p rpr r    with two possible values pr , er
  

and their corresponding probabilities 1pP , 2 pP . If pr  is a constant value, then the 

possible values pr , er
 , expected value ˆ( )pM r , variance ˆ( )pD r , standard 

deviation ˆ( )pr  are found by the formulas 

1p p pr r ;   2e p pr r ;   1 2ˆ( )p p p e p pM r r P r P r    ; 

2
1 2ˆ( ) ( )p e p p pD r r r P P   ;   1/2ˆ ˆ( ) ( )p pr D r  .                         (4) 

The numerical values are equal: 0.82930282fmpr
 , 3.933187582fmer

 , 

6 2ˆ( ) 481.936 10 (fm)pD r   , ˆ( ) 0.021953046fmpr  . Our calculated value of 

the proton radius pr  almost coincides with the new experimental value of 

0.8293 fm for the proton radius in the hydrogen atom, obtained by 2S-4P 
spectroscopy (based on quantum interference) [11]. 

Based on the anisotropic model [1, 2, 4], we find the relationship of the radii pr , pr  

with other characteristic parameters pr , px , py , pr  , pr 
 , pr   

p p pr r x   ;   sn( ; )p px r u k  ;   cn( ; )p py r u k  ;   2 2 2
p p px y r  ; 

3( )p p p pr y r r    ;   p p Fr r n  
  ;   1 22 (1 ) 4( )p p u u p pr r S S r r

     .    (5) 

The parameter sn( ; ) sin 0.057234291u k     is related to the angle   [1, 2]; 

quantum numbers 0.950987889Fn   , 1F Fn n     are related with the lepton 

quantum number 2( ) 0.002402187L Fn     from [5]; parameters 

1| | 0.046741575uS  , 2 0.033051284uS   defined in [4]. Further, based on 

expressions (5), we find the numerical values of the characteristic parameters: 
0.876931544fmpr  , 0.047473446fmpx  , 0.828098429fmpy  , 

0.876478321fmpr   , 0.833520268fmpr 
  , 0.841841587fmpr  . Our 

calculated values pr  and pr   practically coincide with the values of 0.8768 fm 

(the CODATA value) and 0.84184 fm (determined on the basis of fine and ultrafine 
splitting in the framework of quantum electrodynamics) [9], respectively. Our 

calculated value pr 
  practically coincides with the value of 0.8335 fm for muonic 

hydrogen [10]. Our anisotropic model [1, 2, 4] also makes it possible to estimate the 
measurement error pr , pr   using the formulas 

32 sn( ; )[1+sn( ; )]p p pr r r u k u k        ;   112 / ( )p e Fr r z n   ; 

2p d ur r S   ;   | |d ef Fr r  ;   F F pr n r   .                              (6) 
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Taking into account 
11
χ 0.181800122 , 

32
χ 0.010405201 , | | 0.250425279ef   

from [1, 2] and expressions (6) we find estimates of measurement errors 
0.009124649fmpr  , 0.006902512fmpr   , which do not disagree the 

experimental estimates of 0.0091 fm from [11], 0.0069 fm from [9], respectively. In 
this case, the calculated value of the radius 0.208842481fmdr    in our model is 

near the mean square radius of the electric charge distribution in the core of nucleons 
equal to 0.21 fm [12]. The radius 0.833951278fmFr    is related with the 

characteristic radii Fr  , Lr  and the value 0.97597813L   by the expressions 

F F pr n r    ;   2 2 2( ) ( ) ( )F L pr r r    ; 

2 2( )L L pr r    ;   1 (1 )L L F Fn n         .                          (7) 

The values of these radii are equal: 0.042980266fmFr   , 0.866334751fmLr  . 

Anomalies in the magnetic moments of leptons can be determined by the influence 
of CMB radiation. In this case, relict radiation can lead to effects of renormalization 
of the initial parameters: fine structure constant 0 , electron charge e , limiting 

speed of photon propagation in vacuum 0c ; rest masses em , m , m  and 

magnetons B , / 2e m   , / 2e m    for electron, muon,  -lepton, 

respectively. The magnetic moments of leptons ˆe  , ˆ  , ˆ   for an 

electron, muon,  -lepton, respectively, are determined by the expressions 

ˆ2 (2 )e e B    ;   ˆ2 (2 )      ;   ˆ2 (2 )      .    (8) 

Anomalous contributions to magnetic moments and renormalization effects are 
described by parameters e ,  ,   for electron, muon,  -lepton, 

respectively, based on the lepton number L  

e L HL     ;   0/HL HL HE E  ;   3HL H eE n E ;   17.21088699N   ;   (9) 

L NL      ;   0/NL NL HE E   ;   NL eE N E  ;   0( ) FN N n    ;   (10) 

0.5( )L HL GL       ;   0/GL GL HE E  ;   GL G eE n E .                    (11) 

Additional contributions HL , NL , GL  are determined based on the energies 

HLE , NLE  , GLE  and the resting energy of the Higgs boson 0HE . From (9) - (11) 

it follows that these additional energies are determined by the numbers of quanta 

3Hn , N  , Gn  and the rest energy of the electron eE . Wherein 

3 3 0/ (1 )H Hn n    ;   2 2 2
0 01 1 ( ) 1 ( ) χF pn N N         ;       (12) 

3 3 2 3 00.5H H h H An Q n Q n  ;   0 ( 1) /A Q gn z z n n     ;   2Q Gn n .      (13) 

Here 8gn  , 6Qn  , ˆ ˆ 3G G Gn c c   and ˆ ˆ 2G G Gn c c    can be 
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interpreted as the numbers of quanta of the gluon, quark, excited, and ground states 
of the gravitational fields, respectively; neutrino density 0ν 0.002939801   [4]. 

Based on (13) we find 3 20.33926863Hn  . Further, taking into account (12), (10), 

we obtain 3 20.27965049Hn  , 0.052340473Fn  . Based on equations (9) - (11) 

we find the energies 10.36288254 MeVHLE  , 8.794747246 MeVNLE  , 

1.53299721MeVGLE  ; additional contributions 682.88159067 10HL
   , 

670.33975716 10NL
   , 612.26080164 10GL

   . The found parameters 
6/ 2 1159.652705 10e
   , 6/ 2 1165.92362110

   , 6/ 2 1177.307902 10
    

coincide with the data [14] for anomalies of the magnetic moments of leptons. 
 
3  New Hubble Constants 
 
The parameters of active nanoobjects and femtoobjects are related with 
cosmological parameters. To describe accelerated expansion of the Universe in 
model I [17] and the anisotropic model [1, 2, 4], the Hubble constants 01H , 02H , 

0H , characteristic distances 01L , 02L , 0L , speeds 01 , 02 , 0  were introduced 

01 0 01 01 0/ /H c L L  ;   02 0 02 02 0/ /H c L L  ;   0 0 0/H L .        (14) 

The values 0 1MpcL  , -1 1
01 73.2 km s МpcH    , 01 4.0954948GpcL   

(distance to supernova type 1a), -1
01 73.2 km s    and 02 4.2574359GpcL   

(event horizon), -1 1
02 70.415674 km s МpcH    , -1

02 70.415674 km s    were 

obtained on the basis of the analysis of supernova type 1a [3] and measurements by 

Cepheids, respectively. The Hubble constant -1 1
0 67.83540245km s МpcH    , 

velocity -1
0 67.83540245km s    were introduced in [1, 2, 4] to describe the 

radiation of gravitational waves, relict photons from binary black holes, neutron 
stars based on the expression 

0 01/ tH   ;  0 01| |tH HQ S    ;  0 01 02 01 02 02 01/ / H /HQ H L L    .  (15) 

Here are 0 1.039541282HQ  , 01| | 0.039541282S   . New experimental data on 

the attenuation of γ-rays against an intergalactic background [18] make it 

possible to introduce a new Hubble constant 0H , velocity 0
 , and matter 

density m  based on expressions 

0 0 0/H L  ;   0 01 / tH    ;   012tH tH S   ;   012 01 02| |S S S   .   (16) 

Here is 02 0.03409S   . The numerical values of -1 1
0 67.49443576kms МpcH    , 

-1
0 67.49443576km s   , 1( ) / 2 0.141145722m F cn      (the parameter 

1 0.228071512c   is related to the gap in the energy spectrum of relict 
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photons) are close to the experimental data from [18]. From [16] it follows the 
connection of parameters 01H , 01  for the accelerated expansion of the 

Universe with new parameters 0H , 0
 . Our parameters 0H , 0  and new 

parameters 0H , 0
  are close to the main parameters 0H  , 0   of the model 

ɅCDM (plane cosmology). In our model 0H  , 0   are defined by expressions 

0 0 0/H L  ;   0 01/ tH    ;   0 0 0/tH tH g A An n
      .       (17) 

Values -1 1
0 67.30995226km s МpcH    , -1

0 67.30995226km s   are close to 

the parameters of the planar cosmology model. 
 
4  Solar wind and heliopause 
 
The Sun is the source of solar wind (flows of photons and various particles) [19]. 
Photons achieve the Earth after 8 min, and high-energy particles arrive with a delay 
of 100 min [20]. To estimate the characteristic distances and times, we use 

0 0 0/ES ES H ES H ESL L Q c t t    ;   2 2 2 2
0 0 01 01 02(1 | |) /H Hn Q S      ,   (18) 

where 2 2
0 0 0/H Hc n  . Taking into account the numerical values of the distance 

from the Earth to the Sun 81au 1.495995288 10 kmESL    , the limiting speed of 

light in a vacuum 5 -1
0 2.99792458 10 kmsc   , we find estimates of the refractive 

index of the medium 0 1.080646077Hn  , the speed of photon propagation in the 

medium 5 -1
0 2.883891801 10 kmsH   , the distance 0.961962759auESL  , and 

the times of arrival of photons to the Earth from the Sun in vacuum 
480.0293392sESt   and in the medium 499.0103147sESt  . 

To estimate the delay time 0mt  of particles, arriving on the Earth from the Sun, we 

use the expressions 

0 0 02 lnm mt N ;   0 0 0/ n    ;   1
0 0  


 ;   2

0 01.5 | |Hn    ; 

0 0 0ln 2 lnmN n N  ;   2 0 10.5H c FQ N n     ;   0 0 0/H AN  .   (19) 

Expressions (19) were obtained in the framework of the Dicke theory of 
superradiance and describe the main parameters 0 , 0mt  of the superradiance 

pulse in a medium from a state with the number of particles 0mN . 

Based on the numerical values 5
0 3.557716045 10AN   , 0 50.182731HzH  , 

2
0| | 0.181800122H  , 2 1/ 3HQ  , 0.049012111Fn    we find estimates of the 

frequency 0 141.0532217μHz  , relaxation time 0 118.1587096 min  , 

fractal parameter 0 1.681800122n   , coherent spontaneous relaxation time 

0 70.25728449 min  , effective numbers of active particles 0 2.331250869N   
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and 0 17.23047995mN  , delay time 0 100.0101199 minmt  . 

To estimate the characteristic parameters for the region near the boundary of the 
heliopause, we first find the relationships between the rest energies 0EE  and 0HE , 

rest masses EM  and 0Hm , the gravitational radii of Schwarzschild GER  and 0HR  

for the Earth and the Higgs boson, respectively, by the formulas 

0 0 0 0 0/ / /E a H E a H GE a H EE N E M N m R N R n   ;   2
0 0 0H HE c m ; 

2
0 0 0 / 2H H am c R GN ;   0GE G ER A E ;   4

0 0 0/ 2 /G H H aA R E GN c  ; 

0 0GE GE ES E a HR N L n N R  ;   275.977 10 gEM   .                        (20) 

Based on (20) we find the parameters of the theory 10.960836162fm(eV)GA  , 

0 73.87419814En  , 185.347530124 10 kmGER   , 103.574563481 10GEN   . 

Taking into account (18) in the framework of the anisotropic model [4] we find the 
characteristic velocities hS , hS , distances hSL , hSL , time of arrival of the signal 

from the heliopause to the Earth hSt  from the expressions 

0 01| |hS H hS efQ      ;   hS hS ESL N L ;   hS hS ESL N L  ;   0/hS hS HL L Q  ; 

0hS H hSN n N  ;   2 2
0/ /hS GE hSL R c ;   / /hS ES hS ESL L t t .         (21) 

Based on (18) - (21), the values | | 0.250425279ef   from [4], we find the 

estimates -1
02| | 17.63386481kmshS ef    , 123.6734916hSN  , 133.6472735hSN   , 

101.850149607 10 kmhSL   , 16.49080679 hourhS ES hSt t N  . The speed hS  is 

close to the speed -1
V2 17.5kms   of the V2 probe; the distance 118.9692932auhSL   

is near the distance to the heliopause boundary V2 119auL   from [26]. 

To describe the transition region near the boundary of the heliopause, we introduce 
the times 1t , 2t , 3t , distances 1L , 2L , 3L . Next, we find the characteristic time 

intervals 31t , 21t , 32t  by the formulas 

31 3 1 311/t t t    ;   31 02 0 2 0(1 ) /H u AS N    ;   21 2 1 31t t t t P   ; 

32 3 2 31t t t t P   ;   1P P   ;   031/ (2 )P S   .                  (22) 

Using the parameters 02 0.984494334  , 03 0.460458718S    from [4], we obtain 

numerical values: frequency 31 0.072287263μHz  ; probabilities 0.593571722P  , 

0.406428278P ; time intervals 31 160.1122188dayt  , 21 95.03808539dayt  , 

32 65.07413336dayt  . The obtained values of the intervals 21t  and 32t  practically 

coincide with the time intervals of 95 days and 65 days for the transition region near 
the heliopause boundary from [26, Fig. 1a]. 
The characteristic distance 3L  for interstellar space (outside the heliopause at 
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3 2L L ) is determined from the expressions 

3 3L ESL N L ;   3 2(1 )L hL u hSN S N   .                                 (23) 

Using the parameters 0.000118617hL   from [4, 5], hSN  from (21), we find the 

value 3 119.5712542LN   and the estimate of the distance 3 119.5712542auL  . 

To estimate the distance 1L  (inside the heliosphere for 1 2L L ), we use the 

characteristic distances eL , L , L  for e ,  ,  -leptons, respectively, 

determined by the expressions 

             e e ESL N L  ;   e e hSN n N  ;   1(2 ) (1 )e e un S     ; 

             ESL N L  ;   hSN n N  ;   1(2 ) (1 )un S     ; 

ESL N L  ;   hSN n N  ;   1(2 ) (1 )un S     .         (24) 

Using the parameters e ,  ,   from (9) - (11), based on (24) we find the 

estimates of distances 118.1796344aueL  , 118.1811855auL , 

118.1840014auL  . For search of the characteristic distance 2L  (as the 

heliopause boundary), we consider a random variable 2L̂  with two possible values 

3L  from (23), 1 eL L  from (24) and their corresponding probabilities 01P , 

01P . For expected value 2
ˆ( )M L , variance 2

ˆ( )D L , deviation 2
ˆ( )L , we have 

2 01 3 01 2
ˆ( ) eM L P L P L L     ;   2

2 3 01 01
ˆ( ) ( )eD L L L P P    ;   1/2

2 2
ˆ ˆ( ) ( )L D L  ; 

01 01 1P P   ;   01 01 03 01/ (1 )P S      ;   01 1.015268884  .       (25) 

The numerical values of the distance 2 119.0005661auL   and space intervals 

32 3 2 0.57068813auL L L   , 21 2 0.8209317aueL L L    practically coincide 

with the characteristic values of 119 au, 0.57 au, 0.82 au, respectively, from [26, 
Fig. 1a]. Based on (22), (25), we find the average values of the velocities 21  

(inside the heliosphere), 32  (outside the heliopause), the jump in velocities 21  

(at the heliopause) and the ratio of velocities 32 21/   

21 21 21 31 01 31/ /L t L P t P    ;   32 32 32 31 01 31/ /L t L P t P     ;   31 3 1L L L  ; 

21 32 21    ;   32 21 01 01 0 01 0/ / /H HE        .              (26) 

The numerical values are equal: -1
21 14.95635805kms  , -1

32 15.18472495kms  , 
-1

21 228.366896ms  . We note, that the probabilities 01P  and P  are coupled 

through a conditional probability P , and the ratio of the velocities and the jump in 

velocities allow us to introduce probabilities P , P  using expressions of the type 
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01P P P   ;   03 03 01 01(2 ) / (1 ) 1/ (1 )P S S n        ;   1P P   ; 

01 21 321/ /P     ;   21 32/P    ;   01 01 03( 1) / (2 )n S    .        (27) 

From (27) it follows, that 01n  is a function of two arguments 01  and 03S  . If the 

Higgs field is absent ( 01 1  ), then from (27) we obtain: 01 0n  ; probabilities 

1P  , 01P P  , 1P  , 0P  ; jump in speed 21 0   and equality of 

speeds 21 32  . The presence of the Higgs field ( 01 1  ) leads to the 

appearance of a velocity jump, when crossing the heliopause boundary. Replacing 
the parameter 03S   in (27) with other parameters 0xS  , xuS  ( 1,2,3,4x  ) of the 

energy (frequency) spectra leads to a change in the probabilities and stochastic 
behavior of the velocities 21 , 32 . 

The anisotropic model [4] and expressions (1), (4) allow us to obtain relationships of 
velocities 32 , 21  with characteristic velocities u , eu  (active nanoobjects, 

femtoobjects that are part of the solar and galactic wind) of the type 

32 0 01 21F u eun         ;   2u p eu   ;   2 /p e pr r  .     (28) 

Based on (28) we find the velocity estimates -159.04358906kmseu  , 
-1279.9773874 kmsu  . On the other hand, the characteristic solar wind velocity 

u  is related to the Hubble constants 01H  and 02H , 0H , 0H , 0H  , velocities 

01  and 02 , 0 , 0
 , 0   for models from (14), (15), (16), (17), respectively, by 

expressions of the type 

02 0 00.5 2u A W q A          ;   01 02 022q W        ; 

01 02 0 02 0 02 0 02W tH tH tH                      ;   0 0 0/A Ac N  .   (29) 

Values of speeds are equal: -1
0 0.84265426kmsA  , -1143.615674 kmsW  , 

-12.784326kmsq  . 

The velocity hS  from (21) is related to the characteristic velocities of relict photons 

ra , ra  and the velocities 02 , 0
 , 0 , W , h  by expressions of the type 

022 hS ra ra    ;   0 /ra rac N  ;   2 | |ra ef ra    ; 

0 0ra ra     ;   2 2 2
0W h     ;   1041.293475raN  .         (30) 

Values of speeds are equal: -1287.9039053kmsra  , -1144.1968316kmsra  , 
-1

0 134.7596298kms  , -149.65182785kmsh  . 

The experimental data obtained by the Wind probe (the interval of solar wind speed 
changes of 600–300 km s-1, Fig. 6 from [25]), on the UTR-2, URAN-2 radio 
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telescopes (Fig. 5 from [25]) showed, that the solar wind in orbit and beyond the 
Earth’s orbit consists of a set of particle flows with different velocities and densities. 
The structure of these flows depends on time and solar activity [19, 20]. An analysis 
[25] of intermode (intramode) interactions of particles of different flows was 
performed by the interplanetary scintillation method based on the behavior of space 
and time correlation functions for radiation intensity. The velocities 02  , u  

and ra  are close to the characteristic velocities of 270, 280 and 290 km s-1 of 

separate solar wind modes from [25]. The detailed analysis of the multimode 
structure of the solar wind in our model is possible based on spectra of type 

2ux u xuS    and 2rax ra xuS  . From (30) it follows that the velocities 0  

and h  can be interpreted as both the radial and transverse components of the total 

velocity W . The presence of transverse components h  of the solar wind near 

the Sun is confirmed by experimental data collected by the Parker Solar Probe [21 - 
24]. The behavior of the transverse component (Fig. 2 from [22]) is stochastic and 
varies in the range from 50 to –50 km s-1. In [24], such a behavior of the slow solar 
wind is associated with the presence of equatorial coronal holes in the Sun. A fast 
solar wind with speeds 02   occurs near the poles of the Sun. 

In our model, it is also possible to describe the multimode structure of the solar and 
galactic winds at the crossing of the heliopause based on the velocities eu  from 

(28), W  from (29), ra  from (30) and the corresponding velocity spectra. The 

experimental data (Fig. 4d from [27], Fig. 2 from [29]) confirm the stochastic 
behavior and change in the velocity of solar wind particles when the heliopause 
crosses from 150 km  s-1  to 100 km s-1. The complex dynamic behavior of the 
plasma components (Fig. 3, 4 from [29]) with velocities near eu , 2 eu  inside the 

heliosphere indicates the presence of a boundary layer near the heliopause. 
To estimate the characteristic energies 0A , 0AE , A , effective wavelength A , 

effective number 0nN  of particles, we use expressions of the type 

0 0 0 0/ /H A A G AE E E N   ;   0 0 0 0/ /H A A G nE E E N  ; 

0 0 0/H G HG n AE E N N N  ;   2
0 0 0A A A H GE E E   ;   /A Aa   .   (31) 

Taking into account 5
0 3.557716045 10AN   , 161.031830522 10HGN   , a  from [6] 

we find the estimates: 0 351.4400206 keVA  , 0 4.311073329eVAE  , 

1.230887363keVA  , 1.007114093nmA  , 10
0 2.900261036 10nN   . 

The presence of a multimode structure of the solar and galactic wind, the Higgs field 

leads to the replacement A , A  by A
 , A

  by the formulas 

A rc bb    ;   / 2A A Aa R      ;   /A A GE R A  ; 

0 1 2(| | )bb A u uS S   ;   0 01 02 1 02 22 / ( ) /rc rc A u uE S S       .   (32) 
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The values are equal: 28.042404 keVbb  , 0.04420725rc  , 95.290347 meVrc  , 

1.239677565 keVA
  , 0.999972933nmA

 , 0.520365996МeVAE  . The 

energy AE  (for solar wind particles inside the heliosphere) is associated with the 

energy LE  (for galactic wind particles behind the heliopause) 

0( )A L g G LE n E      ;   0 0 11.5G A c FN n      ; 

2 2 2
0 4rc A rcE E   ;   2 2 2

0( ) 4rc A rcE E    .                          (33) 

The numerical values are equal: 6
0 4.99501253 10G

   , 213.0772532МeVLE  , 

4.306858745eVrcE  , 4.315283797eVrcE  . The energy estimates bb , LE  

obtained in our model are consistent with the energies of 28 keV, 213 MeV from 
[26], and the energy AE  is consistent with the energy of 0.5 MeV from [28]. 

The magnetic characteristics of solar and galactic wind particles have features of the 
behavior at the intersection of the heliopause: a jump in the magnetic field from 0.42 
to 0.68 nT is observed (Fig. 1a from [27]); components of the magnetic field can 
have different signs (Fig. 3 from [27]); the presence of a magnetic barrier (Fig. 4a 
from [27]); a change in the direction of the magnetic field components (Fig. 6b, c 
from [27]). In our model, to estimate the components of magnetic fields y xB  , 

y xB 
  we use frequency spectra of the type 

0/ 2 2y x n y x y xB S        ;   / 2 2y x n y x y uxB S        ;   0,1,2y  ; 

0 /y y raN  ; 2 1 2 1 012/ (1.5 )zgB B n S 
    ; 00 0H  ; 02 02 0H   .  (34) 

Here we use the well-known nuclear gyromagnetic ratio / 2 0.6535МHz/kOn    

for the deuteron (2H) [12], 0.114317037zgn   [4]. Based on (34) we find estimates: 

frequencies 2 1 4.4353480mHz   ; jump of magnetic fields from 2 1 0.4190147 nTB    

to 2 1 0.6787067 nTB 
   at the intersection of heliopause. The numerical values of 

the fields deviations of the type 0 1 0 2 0.0804015nTB B B     , 

0 1 0 2 0.2019195nTB B B        and the sum of the deviations 

0.282321nTB B     are characteristic of the stochastic behavior of the 

magnetic field on time inside the heliosphere (consistent with data Fig. 6 from [27]). 
 
Conclusions 
 
In fractal quantum systems the model femtoobjects, as active objects with sizes 
of the order of the classical electron radius, are considered. The main parameters 
of the model femtoobject, which are coupled with the known parameters from 
quantum electrodynamics and the Higgs boson, are introduced. To take into 
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account the stochastic behavior of the parameters, random variables with two 
possible values and the corresponding probabilities are introduced. It was 
shown, that the obtained estimates of the proton radius, measurement errors 
using the example of the hydrogen atom, and estimates of the anomalies in the 
magnetic moments of leptons are consistent with the experimental data. 
The parameters of active nanoobjects and femtoobjects are coupled with 
cosmological parameters, with new values of the Hubble constants. These active 
objects can determine the compound, structure and behavior of the solar wind 
(flows of various particles) near the Sun, Earth and in interstellar space (near the 
heliopause). The relationships of such active objects with the parameters of the 
Higgs boson and the Higgs field are determined. Estimates of the main 
parameters are conformed with the experimental data, obtained by the Planck 
space observatory (based on Fermi-LAT and Cerenkov telescopes), UTR-2 and 
URAN-2 radio telescopes, Parker Solar Probe, Voyager 2 and Voyager 1. 
The results can be used to find a solution to the problem associated with the Covid-
2019 virus (based on active femtoobjects and nanoobjects), in cosmic medicine. 
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Abstract: By the method of numerical simulation, the behavior of the deformation field 
of both separated and related model fractal structures of a cylindrical type was 
investigated. It is shown, that for the considered structures, the behavior of the 
deformation field essentially depends on the choice of stochastic processes (realized 
during iterations) and on the states of the qubit in the perpendicular plane to the axis of 
the cylinder. It is shown that the structure of the complex deformation field for a circular 
(elliptical) cylinder essentially depends on the initial basic, superposition states of the 
qubit. Due to the presence of various qubit states for coupled (using the example of 
circular and elliptic cylinders) fractal structures, the appearance of random matrices 
during iterations is characteristic. There is a need to use commutators and anti-
commutators, products of separate deformation field operators. At this, the structure of 
the complex deformation field has own characteristic features of behavior. 
Keywords: fractal structure, qubits, random matrices, complex deformation field, 
ordering of operators, quantum chaos. 
 

1  Introduction 
 
Earlier in [1–3], to describe the total deformation field of coupled fractal 
structures in an iterative process, the sum of the displacement field operators of 
separate fractal structures was used. The deformation field of the coupled 
structure essentially depends on the sequence of separate operators of 
displacement fields in the iterative process. On the examples of quantum dots 
[4], elliptic [1, 2] and circular [3, 5] cylinders the influence of the ordering of 
separate operators of displacement fields on the total deformation field of the 
coupled structure was shown. The presence of variable semiaxes and variable 
moduli leads to stochastic behavior of the complex deformation field of such 
structures. Based on pairs of same fractal structures with opposite orientations 
of the deformation fields, complex zero operators were introduced [3. 5]. It is 
shown that changes in the order of the sequence of separate operators in the zero 
operator for a coupled structure leads to the appearance of a nonzero complex 
deformation field. At the same time, noise tracks appear on the background of 
stochastic peaks. The noise track is a stochastic ring, the inside region of which 
is regular region. 
For describe quantum chaos random matrices are used [6]. Elements of random 
matrices can be formed as a result of an iterative process. In this case, the need 
arises for the use of commutators and anti-commutators, products of separate 
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operators, qubit states [7, 8] of the deformation field. Quantum computers [9 -
 12] encode information in qubits. The physical systems that realise qubits can 
be any objects having two quantum states. Different nanostructures and 
metamaterials [13] can be chosen as active objects. These active objects can be 
in superposition qubit states and exhibit stochastic properties, quantum 
entanglement. 
The aim of this work is to describe the deformation fields of fractal coupled 
structures consisting of two separate structures (circular and elliptical cylinders) 
with different qubit states. In this case, the deformation fields of coupled 
structures are considered as the sum and product (scalar and matrix) of the 
deformation fields of separate structures. 
 
2  Description of the deformation field of separate fractal 
structures in various qubit states 
 
We consider a model fractal structure (circular or elliptical cylinder), located in 
a bulk discrete lattice 1 2 3N N N  , whose nodes are given by integers , ,n m j . 

By analogy with [1 – 3, 5] nonlinear equations for the dimensionless 
displacement function u  of the lattice node are 

2 2
0(1 2sn ( , ))u uu k u u k    ;                                      (1) 

2 (1 ) /uk Q  ;   2 1/2
  (1 )u uk k   ;   0 1 2 3p p p n p m p j    ;      (2) 

2 2 2 2 2 2
1 0 2 0 3 0( ) / ( ) / ( ) /c c cQ p b n n n b m m m b j j j       .           (3) 

Here 0u  is the constant (critical) displacement; a  is the fractal dimension of the 

deformation field u  along the axis Oz  ( [0,1]a Î ); variable modules uk , uk   are 

functions of indices n , m , j  nodes of the bulk discrete lattice. The choice of the 

positive sign of the module uk   is associated with the choice of the second 

branch of the displacement function u  [14]. Function Q  determines the form of the 

fractal structure, the type of attractors and take into account the interaction of the nodes of 
both in the main plane of the discrete rectangular lattice 1 2N N´  as well as 

interplane interactions. The parameters 1b , 2b , 3b , 0n , cn , 0m , cm , 0j , cj  

characterize different fractal structures. The choice of function p  depends on 

the choice of parameters ip , 0,3i  . In this paper, we are limited to 

consideration of qubit states with 1 0p  , 2 0p  , 3 0p   and shift 0 0p  . 

The iterative procedure on index n  for equations (1) - (3) simulates stochastic 
processes on a rectangular discrete lattice with dimensions 1 2N N . 

By numerical modelling, it was assumed that 1 240N  , 2 240N  , 0.5 , 

0 29.537u  , 0 1.0423p  , 1 2 1b b  , 0 121.1471n  , 0 120.3267m  , 
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0 31.5279j  , 11.8247cj  , 3 0b  . For a circular cylinder, the semiaxes were 

equal 57.4327c cn m  , and for an elliptical cylinder they were as follows 

55.2537cn  , 14.9245cm  . 

To describe the deformation field of an separate circular (elliptical) cylinder, the 
basic states of the qubit and their superposition in the plane nOm  are 
introduced. The various states of the qubit in the plane nOm  are described by 
nonzero coefficients for linear terms in the functions p , Q . 

The initial state of an separate circular (elliptical) cylinder is the state (0,0) with 
the coefficients 1 0p  , 2 0p  . 

The basic states of a qubit are states (1,0), (0,1), (-1,0), (0, -1) with the 
coefficients 1 0p   or 2 0p  . So for state (1,0) are 1 0.00423p  , 2 0p  ; for 

state (0,1) are 1 0p  , 2 0.00572p  ; for state (-1,0) are 1 0.00423p   , 

2 0p  ; for state (0,-1) are 1 0p  , 2 0.00572p   . 

For superpositional states of qubits, we have, respectively: 

                            state (1,1) are 1 0.00423p  , 2 0.00572p  ; 

                            state (1,-1) are 1 0.00423p  , 2 0.00572p   ; 

                            state (-1,1) are 1 0.00423p   , 2 0.00572p  ; 

state (-1,-1) are 1 0.00423p   , 2 0.00572p   .                  (4) 

Fig. 1 shows the behavior of the cross sections of the deformation field u  for 
elliptical (Fig. 1a, d) and circular (Fig. 1b, e) cylinders in the initial state (0,0) 
and basis states of qubits. 
Fig. 1c, f, g, h, i, j, k, l shows the behavior of the cross sections of the 
deformation field u  for a circular cylinder in the basic states of qubits: Reu  
(Fig. 1c, g, h, i), Im u  (Fig. 1f, j, k, l). In this case, the peak amplitudes and the 
variation range Reu , Im u  for the elliptical cylinder are smaller than for the circular 
one. 
For the initial (0,0) and basic states (1,0), (0,1) of qubits the regular behavior 
Reu  in the inner region is characterized (Fig. 1b, c, g). 
By changing qubit states, the features of behavior of the deformation field is 
observed: the concave part of the inner region (Fig. 1b) changes to the convex 
(Fig. 1c) and then to the convex-concave (Fig. 1g). Such behavior allows the 
interpretation of the inner region as a membrane with the possible alteration of 
its states due to a change in the states of qubits. 
The regular behavior of the inner region Reu  is limited by the stochastic 
boundary (stochastic ring). The outer region Reu  is characterized by wave-like 
behavior, which is explained by the presence of variable modules uik , uik   (2) 

in expressions (1). Localized in the region of boundary rings with 
discontinuities (Fig. 1e, f, j) the stochastic behavior is characteristic for Im u , 
while Im 0u   is characteristic in the inner and outer regions of the rings. 
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a) state (0,0) b) state (0,0) c) state (1,0) 

   
d) state (0,0) e) state (0,0) f) state (1,0) 

   
g) state (0,1) h) state (-1,0) i) state (0,-1) 

   
j) state (0,1) k) state (-1,0) l) state (0,-1) 

 
Fig. 1. The behavior of the cross sections u  (top view) depending on the states of 

qubits of separate structures: Re [ 1;1]u   - (a, b, c, g h, i); Im [ 1;1]u   - (d, e, f, j, k, 
l). The initial states of qubits (0,0) for elliptical (a, d) and circular (b, e) cylinders.  

The basic states of qubits for a circular cylinder (c, f, g - l). 
 

For the other basic states (-1.0), (0, -1) of qubits characteristic stochastic 
behavior Reu  in the inner region and wave-like behavior in the outer region 
(Fig. 1h, i), that indicates a significant alteration of the structures. 
For these states Im u  has a stochastic structure, localized in the inner region of 
the cylinder (Fig. 1k, l), and outside the region Im 0u  . The imaginary part 
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Imu  indicates the presence of an effective damping. By changing these basis 
states, the character of damping changes. 

 

   
a) state (1,1) b) Re [ 1;1]u   c) Im [ 1;1]u   

   
d) state (-1,-1) e) Re [ 1;1]u   f) 9 9Im [ 10 ;10 ]u     

 
Fig. 2. Superpositional states of qubits of a separate structure (circular cylinder). 

Behavior Reu  (a, d) and cross sections (top view) (b, c, e, f)  
in the states: (1,1) - (a, b, c); (-1, -1) - (d, e, f). 

 
The presence of superpositional states of qubits in separate structures leads to a 
change in the behavior of the complex deformation field. As an example, Fig. 2 
shows the behavior Reu  (Fig. 2a, d) and cross sections (Fig. 2b, c, e, f) of an 
separate structure (circular cylinder)  in  superposition states of qubits (1,1)  and 
(-1, -1). The characteristic features of the behavior of the deformation field for 
state (1.1) (Fig. 2b, c) are close to state (0,0) (Fig. 1b, e). The characteristic 
features the cross sections behavior of deformation field for the state (-1, -1) 
(Fig. 2e, f) are close to the states (-1,0) (Fig. 1h, k), (0, -1) (Fig. 1i, l). 
However, the behavior Reu  for the superposition state (-1, -1) (Fig. 2d) differs 
significantly from the characteristic behavior Reu  of all other superposition 
states of qubits (1,1) (Fig. 2a), (1, -1), (-1,1). Instead of a structure such as a 
circular stochastic dislocation (Fig. 2a), a structure like a stochastic funnel 
(Fig. 2d) arises. In this case, the amplitudes Reu  and Im u  for the state (-1, -1) 
are significantly smaller than the amplitudes for other states of qubits. 
 
3  Fractal coupled structures with initial states of qubits of 
separate structures 
 
Consider the model fractal coupled structures (I,II), (II,I), consisting of two 
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separate structures (I) and (II) with the same initial qubit states (0,0). By 
analogy with (1) – (3) nonlinear equations for the dimensionless complex 
displacement function u  of the lattice node are 

2

1
Ri

i

u u


 ;   2 2
0(1 2sn ( , ))Ri i ui i uiu R k u u k    ;                              (5) 

2 (1 ) /ui i ik Q  ;   2 1/2
  (1 )ui uik k   ;  0 1 2 3i i i i ip p p n p m p j    ;      (6) 

2 2 2 2 2 2
1 0 2 0 3 0( ) / ( ) / ( ) /i i i i ci i i ci i i ciQ p b n n n b m m m b j j j       .      (7) 

Here, all parameters have the same meaning as for expressions (1) – (3). 
Parameters iR  ( =1,2i ) determine the orientation of the deformation fields of 

separate structures in a coupled system. For separate structures (I) and (II), the 
deformation fields 1Ru u  and 2Ru u  correspond to the matrices 1RM  and 

2RM , whose elements are found independently from each other by the iteration 

method. In this case, the iterative procedure on index n  for equations (5) - (7) 
simulates two independent stochastic processes on a rectangular discrete lattice 
with dimensions 1 2N N . Earlier in [5], ordered operators of displacement 

fields of a coupled structure were introduced as the sum of the operators of 
separate structures. Here, for the sum of the matrices 1RM , 2RM  the relation is 

fulfilled 

1 2 2 1R R R R  M M M M .                                   (8) 

The deformation fields for the coupled structures (I,II), (II,I) correspond to the 
ordered operators 

(I,II) 1 2R Ru u u u   ,   (II,I) 2 1R Ru u u u                        (9) 

and matrices (I,II)M , (II,I)M , whose elements are found by the iteration 

method. The iterative procedure on index n  for equations (5) – (7) simulates 
two other independent stochastic processes for matrices (I,II)M , (II,I)M . In this 

case, the relations are fulfilled 

(I,II) 1 2 2 1 (II,I)R R R R    M M M M M M ;    (I,II) (II,I) 0 M M .     (10) 

To describe the deviation of the deformation field of the coupled structures (I,II) 
and (II,I), we introduce the ordered operator 

1 2 2 2 1 1( ( )) ( ( ))R R R Ru u f u u f u     ,                         (11) 

which corresponds to the matrix M . An iterative procedure on index n  

simulate stochastic process for a matrix M , which does not coincide with 

stochastic processes for matrices (I,II)M , (II,I)M , 1RM , 2RM . In this case 
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(I,II) (II,I)  M M M ;   0 M .                               (12) 

From (12) follows, that stochastic processes for matrices (I,II)M , (II,I)M  

become dependent. If in (11) assume 2 2 2( )R Rf u u , 1 1 1( )R Rf u u , then 

(I,II) (II,I)M M , what confirms the independence conditions for stochastic 

processes (10). Attractors of the deformation field of the coupled fractal 
structure are located on the surface, the core of which is determined from the 
condition 

1 2 0Q Q  .                                                   (13) 

By numerical modeling, it was assumed, that: 0.5i  , 0 29.537iu  , 

0 1.0423ip  , 1 2 1i ib b  , 0 121.1471in  , 0 120.3267im  , 1 1 57.4327c cn m  , 

0 31.5279ij  , 11.8247cij  , 1 2 3 0i i ip p p   , 3 0ib  . In this case, in fractal 

coupled structures (I,II) and (II,I), the structure (I) is a circular cylinder and the 
structure (II) is an elliptical cylinder with variable semi-axes 2 2,c cn m . The 

variable semiaxes were chosen so that the cross-sectional area of the ellipse 

2 2c cS n m  did not change and was equal to the cross-sectional area of the 

circular cylinder 824.6316S   from [2, 3]. For an elliptical cylinder (II), the 
semiaxes 2 2,c cn m  were defined as follows: 

variant 1 are 2 43.0746cn  , 2 19.1443cm   (the elliptical cylinder is inside the 

circular cylinder); 

variant 2 are 2 55.2537cn  , 2 14.9245cm   (the elliptical cylinder approaches 

to the circular cylinder along the axis On ); 

variant 3 are 2 119.9327cn  , 2 6.8758cm   (the elliptical cylinder extends 

beyond the boundaries of the circular cylinder along the axis On ). 

Fig. 3 shows the behavior of attractors for all three variants of fractal structures 
(I,II) and the complex deformation field (I,II)u . The different behavior of 

attractors (Fig. 3a, b, c) and cross sections of the complex deformation field 
(Fig. 3d - i) confirm the stochastic nature of the deformation field of the 
structure (I,II) and its dependence on the semiaxes of the elliptic cylinder (II). 
The behavior of the deformation field of the structure (II,I) in this paper is not 
given. However, completed researches performed make it possible to estimate the 

deviations (12) 9Re 10
M , 25Im 10

M , which indicates to the dependence 

of stochastic processes in (11). 
As a result of the iterative process, elements of random matrices are formed, 
which depend on various qubit states of separate structures in a coupled 
structure. Random matrices are used to describe quantum chaos [6]. In this case, 
there is a need to use commutators and anti-commutators, products of separate 
operators of the deformation field. Next, we consider fractal coupled structures 
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(III) and (IV), the deformation fields of which 3u  and 4u  are described by the 

product of the deformation fields of separate structures (I) and (II) with the same 
initial qubit states (0,0). The deformation fields of structures (III) and (IV) 
correspond to the matrices 3 1 2R R M M M  and 4 2 1R R M M M . Here, the dot 

symbol describes the operation of ordinary matrix multiplication. Fig. 4 shows the 
behavior of the complex deformation field for structures (III) and (IV). In this case, 
structure (II) parameters were chosen corresponding to variant 2. The attractors of 
structures (III) and (IV) coincide with the attractor from Fig. 3b. Cross sections 
(Fig. 4b, e), projections onto the plane nOu  (Fig. 4a, d) confirm the stochastic and 
fractal behavior of the deformation field of structure (III), which differs significantly 
from the behavior of the deformation field of structure (IV) (Fig. 4c, f). This 
confirms the non-commutativity the operation of ordinary matrix multiplication 

3 4 1 2 2 1 0R R R R     M M M M M M . 

 

   
a) variant 1 b) variant 2 c) variant 3 

   
d) variant 1 e) variant 2 f) variant 3 

   
g) variant 1 h) variant 2 i) variant 3 

 
Fig. 3. The behavior of attractors (a, b, c) and the deformation field u  of coupled 
structure (I,II): (d, e, f) – (I,II)Re [ 1;1]u   , (g, h, i) – (I,II)Im [ 1;1]u    cross 

sections (top view). 
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a)  b) Re [ 1;1]u   c) Re [ 1;1]u   

   
d)  e) Im [ 1;1]u   f) Im [ 1;1]u   

 
Fig. 4. Deformation fields of structures (III), (IV): 3u u  (a, d) – projections 

onto the plane nOu , (b, e) – cross sections (top view); 

4u u  (c, f) – cross sections (top view). 

 
Changing the operation of ordinary matrix multiplication on the scalar 
multiplication of complex deformation fields leads to the replacement of the 
coupled structures (III) and (IV) on structures (V) and (VI). In this case, the 
iterative procedure on index n  simulates the coupled (dependent) stochastic 
processes of the initial independent stochastic processes for separate structures 
(I) and (II) with the same initial qubit states (0,0). 
The deformation fields of structures (V) and (VI) are described by the functions 

5 1 5 2( )R Ru u f u  and 6 2 6 1( )R Ru u f u , to which the matrices 5M  and 6M  

correspond. If by modeling we use independent iterative processes for structures 
(I) and (II), then 

5 2 2( )R Rf u u ;   6 1 1( )R Rf u u ;   5 1 2 2 1 6R R R Ru u u u u u   ;   5 6M M .  (14) 

Matrix equality confirms the independence of iterative processes. 
Fig. 5 shows the behavior of the complex deformation field for structures (V) and 
(VI). In this case, structure (II) parameters were chosen corresponding to variant 2. 
The attractors of structures (V) and (VI) coincide with the attractor from Fig. 3b. 
Cross sections (Fig. 5b, e), projections onto the plane nOu  (Fig. 5a, d) confirm 
another (compared to Fig. 4) stochastic and fractal deformation field behavior of the 
structure (V), which also differs significantly from the deformation field behavior of 
the structure ( VI) (Fig. 5c, f). This is due to the dependence of the stochastic 
processes ( 5 6M M ). 
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a)  b) Re [ 1;1]u   c)  

   
d)  e) Im [ 1;1]u   f)  

 
Fig. 5. Deformation fields of structures (V), (VI): 5u u  (a, d) – projections 

onto the plane nOu , (b, e) – cross sections (top view); 

6u u  (c, f) – projections onto the plane nOu . 

 
4 Fractal coupled structures with various superpositional 
qubits states of separate structures 
 
Next, we consider the superpositional qubits states of fractal coupled structures (V) 
and (VI). The deformation fields of these structures are described by functions 

5 1 5 2( )R Ru u f u  and 6 2 6 1( )R Ru u f u  with the corresponding matrices 5M  and 

6M , where the scalar multiplication of complex deformation fields of separate 

structures (I), (II) is realized. In this case, the iterative procedure on index n  
simulates coupled (dependent) stochastic processes for the initial independent 
stochastic processes for structures (I) and (II), the deformation fields of which 
are described by the functions 1Ru u  and 2Ru u . As an example, Fig. 6 

shows the behavior of the complex deformation field for structure (V). In this case, 
the separate structure (I) is a circular cylinder with parameters as for Fig. 1, and the 
parameters of a separate structure (II) (elliptical cylinder) correspond to variant 2 
(the elliptical cylinder approaches the circular cylinder along the axis On ). In the 
coupled structure (V), the separate structures (I), (II) have the same 
superposition qubit states (1,1) (Fig. 6a, b, d, e) and (-1, -1) (Fig. 6c, f). The 
behavior of the deformation field of the coupled structure (V) with the same 
initial qubit states (0,0) is given on Fig. 5a, b, d, e. The presence of same 
superpositional qubit states (1,1) of separate structures in a coupled system 
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(Fig. 6a, b, d, e) leads to a change in the complex deformation field compared to 
Fig. 5a, b, d, e: the decrease amplitudes of peaks, the shift of peaks (Fig. 6a, b), 
the change of structure (Fig. 6d, e) are observed. An original feature of the 
deformation field behavior of the coupled structure (V) with the same 
superpositional states (-1, -1) of separate structures is the absence of the 
imaginary part of the displacement function in all region ( 5Im 0u  ), that 

indicates the absence of effective attenuation. This makes it possible to interpret 
the coupled structure (V) with the same superpositional states (-1, -1) of the 
separate structures (I), (II) as a memory cell. For 5Reu  the presence of a 

broadened stochastic peak up is characteristic (Fig. 6c). In this case the cross-
sectional structure (Fig. 6f) for state (-1, -1) differs from the cross-sectional 
structure (Fig. 6d) for state (1,1). 

 

   

a) 3Re 10u   b) 3Im 10u   c) Reu  

   
d) Re [ 1;1]u   e) Im [ 1;1]u   f) Re [ 1;1]u   

 
Fig. 6. The behavior of the displacement u  of the fractal coupled structure (V): 
separate structures (I) and (II) have the same superposition qubit states: (1,1) - 

(a, b, d, e); (-1, -1) - (c, f). 
 

By changing the superposition qubit states of separate structures (I), (II), one 
can change and control the behavior of the complex deformation field of the 
coupled structure (V). As an example, Fig. 7 shows the behavior of cross 
sections 5Reu  of the fractal coupled structure (V), when changing 

superposition qubit states of separate structures (I), (II). If structure (I) is in state 
(1,1), and the qubit states of structure (II) change (Fig. 7a, b, c), then the 
complex deformation field of structure (V) changes significantly compared to 
Fig. 6d, e: for sections 5Reu , the effect of mixing of separate trajectories in the 
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inner region, a change in behavior 5Im u  are observed. If structure (I) is in the 

state (-1, -1), and the qubit states of structure (II) change (Fig. 7d, e, f), then the 
complex deformation field of structure (V) in comparison with Fig. 6c, f (where 

5Im 0u  ) arises. In this case, an alteration of the structure of the inner region 

with the formation of stochastic boundary rings, the effect of mixing of 
individual trajectories for the cross sections Reu  are observed. Using 
additional (external or internal) action the transitions of separate structures from 
one qubit state to another can be realized. 

 

   
a) (I):(1,1), (II):(-1,1) b) (I):(1,1), (II):(-1,-1) c) (I):(1,1), (II):(1,-1) 

   
d) (I):(-1,-1), (II):(-1,1) e) (I):(-1,-1), (II):(1,1) f) (I):(-1,-1), (II):(1,-1) 

 
Fig. 7. The behavior of the cross sections Re [ 1;1]u   (top view) for fractal 

coupled structure (V). Separate structures (I) and (II) have different 
superpositional states of qubits. 

 
Similarly, the behavior of the deformation field of the coupled structure (VI), 
depending on the qubit states of separete structures (II), (I) was studied. In the 
general case, the deformation field of the coupled structure (VI) is complex. In this 
case, the conditions 

6 5 2 6 1 1 5 2( ) ( ) 0R R R Ru u u f u u f u    ,   6 5 0 M M ,                (15) 

are satisfied, that is connected with the dependence of this stochastic processes. This 
indicates, that the displacement field operators of the separate structures (II), (I) and 
(I), (II) do not commute in the coupled structures (VI) and (V). As for structure (V), 
a feature of the deformation field behavior of the coupled structure (VI) with the 
same superposition states (-1, -1) of separate structures is the absence of 
effective attenuation in all region ( 6Im 0u  ). For 6Reu  the presence of the 
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broadened stochastic peak with a structure close to the peak 5Reu  (Fig. 6c) is 

also characteristic, but 6 5Re Re 0u u  . 

 
Conclusions 
 
By the numerical modelling method the behavior of the deformation field of the 
coupled fractal structures (circular and elliptical cylinders) in various (initial, 
basic, superpositional) qubit states was investigated. It is shown, that when the 
qubit states change, features of the behavior of the complex deformation field of 
a separate structure are observed. The regular behavior of the inner region Reu  
is limited by the stochastic boundary (stochastic ring), wherein the concave part 
of the inner region changes to convex and then to convex-concave. The wave-
like behavior for outer region Reu  is characteristic. Such behavior allows the 
interpretation of the inner region as a membrane with the possible alteration of 
its states due to the change of qubit states. The stochastic behavior for Im u , 
localized in the region of boundary rings with discontinuities is characteristic, 
wherein in the inner and outer regions of the rings Im 0u  . 
For fractal coupled structures with initial states of qubits of separate structures, 
the behavior of attractors and the complex deformation field is considered. It is 
shown, that the behavior of the deformation field essentially depends on the 
choice of stochastic processes realized during iterations. As examples, the 
features of the behavior of the deformation fields resulting from the sum, scalar 
and matrix products of independent and dependent stochastic processes are 
investigated. 
Fractal coupled structures with various superpositional states of qubits of 
separate structures are considered. It is shown, that the presence of same 
superpositional qubit states of separate structures in the coupled system leads to 
the change in the complex deformation field: there is the decrease in peak 
amplitudes, peak displacement, and the change in structure. The original feature 
of the behavior of the deformation field of the coupled structure with the same 
superpositional states (-1, -1) of separate structures is the absence of effective 
attenuation ( Im 0u  ), which allows one to interpret the such structure as the 

memory cell. 
By changing the superpositional qubit states of separate structures, one can 
change and control the behavior of the complex deformation field of the coupled 
structure. In this case, for the cross sections Reu , the alteration of the inner 
region structure with the formation of stochastic boundary rings, the effect of 
mixing of separate trajectories is observed. Using additional (external or 
internal) action transitions of separate structures from one qubit state to another 
can be realized. 
In the general case, the operators of the displacement field of coupled structures 
depend on the qubit states of separate structures and do not commute. 
The results can be used to describe neural networks with variable parameters, in 
medicine when modeling blood vessels, for quantum information processing. 
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Abstract. We review our recent work on ellipsoidal M2-brane solutions in the large-
N limit of the BMN matrix model. These bosonic finite-energy membranes live inside
so (3) × so (6) symmetric plane-wave spacetimes and correspond to local extrema of
the energy functional. They are static in so (3) and stationary in so (6). Chaos ap-
pears at the level of radial stability analysis through the explicitly derived spectrum of
eigenvalues. The angular perturbation analysis is suggestive of the presence of weak
turbulence instabilities that propagate from low to high orders in perturbation theory.

Keywords: Dynamical systems, chaos, M-theory, BMN matrix model, relativistic
membranes.

1 Introduction

M-theory By the end of the first superstring revolution (1984-1994), five seem-
ingly different 10-dimensional superstring theories had emerged:

Types I, II (IIA, IIB), Heterotic (so(32), E8 × E8).

During the subsequent second superstring revolution (1994-2003), it was found
that the 5 superstring theories are connected via a web of dualities (T-duality,
S-duality, U-duality, mirror symmetry). What is more, it was realized that
the five 10-dimensional superstring theories were just limiting cases of an 11-
dimensional theory. This theory was called ”M-theory”; it is obtained in the
strong-coupling limit (gs → ∞) of IIA superstring theory. The letter ”M”
stands for ”magic, mystery and matrix” according to one of its founders, E.
Witten [1]. Others have associated the letter ”M” with ”membranes” [2].

Relativistic membranes The idea behind the theory of relativistic membranes
is simple: replace 1-dimensional lines (strings) with 2-dimensional surfaces
(membranes), much like lines/strings replace 0-dimensional points/particles in
the passage from quantum field theory to string theory. Like point particles

13thCHAOS Conference Proceedings, 9 - 12 June 2020, Florence, Italy
C. H. Skiadas (Ed)
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2 Axenides et al

and strings, membranes are Poincaré invariant objects that can be supersym-
metrized. It has been proven that supermembranes can only be defined consis-
tently in 11 spacetime dimensions. Higher-dimensional extended supersymmet-
ric objects (Mp-branes) can be defined in an analogous fashion. Nonetheless,
there are reasons to believe that supermembranes (or ”M2-branes”) are the
fundamental objects of the 11-dimensional M-theory, just like strings are the
fundamental objects of 10-dimensional string theory.

Matrix models According to the matrix theory conjecture of Banks, Fischler,
Shenker and Susskind (BFSS) [3], a theory of matrix-discretized supermem-
branes provides a realization of M-theory in flat spacetime. In the language of
matrix models, membranes are fuzzy objects that are represented by N × N
matrices. In the limit of very large matrix dimensions (N →∞), these matrix
models are known to reduce to supermembrane theories.

In 2002, Berenstein, Maldacena and Nastase (BMN) [4] proposed a refor-
mulation of the BFSS matrix model on a particular type of a background that
consists of a weakly curved spacetime that is known as a plane-wave, supported
by a constant (4-form) field strength:

ds2 =−2dx+dx− −

µ2

9

3∑
i=1

xixi +
µ2

36

6∑
j=1

yjyj

 dx+dx+ +

3∑
i=1

dxidxi+

+

6∑
j=1

dyjdyj , F123+ = µ. (1)

Briefly, the BMN matrix model is a deformation of the BFSS matrix model by
mass terms and a flux (aka Myers) term. In the large-N limit it is again known
[5] that the BMN matrix model reduces to a theory of supermembranes in the
11-dimensional plane-wave background (1). Interestingly, M(atrix) theory has
quite recently been applied to the study of chaotic phenomena that take place
on the horizons of black holes.

Black holes Black holes (BHs) are regions of spacetime where the force of grav-
ity is so strong that nothing (not even light) can escape. The 2-dimensional
surface beyond which it is (classically) impossible for matter or information to
escape the gravitational pull of a BH is known as the BH’s event horizon. In
1974 Stephen Hawking predicted that it is (quantum-mechanically) possible for
BHs to emit thermal radiation and thus slowly evaporate. Because Hawking’s
radiation is purely thermal, all the information that is stored in BHs seems to
get lost.

To resolve the ensuing BH information paradox we ultimately need to un-
derstand the mechanisms with which information is being stored and processed
in BHs. One such mechanism is known as fast scrambling or ultra-fast thermal-
ization [6]. More generally, it is widely believed that chaotic phenomena are a
dominant feature of BH horizons. Because it is inherently nonlocal, M(atrix)
theory turns out to be a valuable tool in the study of information processing
by BHs. More precisely, M(atrix) theory can be used to model the dynamics
of the microscopic degrees of freedom that are present on BH horizons [7,8].
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M-theory as a dynamical system 3

2 General setup

Our starting point is the Hamiltonian of a bosonic relativistic membrane in the
11-dimensional maximally supersymmetric plane-wave background (1). The
Hamiltonian reads, in the so-called light-cone gauge x+ = τ [5]:

H =
T

2

∫
d2σ

[
π2
i +

1

2
{xi, xj}2 +

1

2
{yi, yj}2 + {xi, yj}2 +

µ2x2

9
+
µ2y2

36
−

−µ
3
εijk {xi, xj}xk

]
. (2)

From now on the indices of the coordinates xi will implicitly be taken to run
from 1 to 3, while those of the coordinates yj will run from 1 to 6.1 In (2) T
stands for the membrane tension and

π2
i ≡

3∑
i=1

ẋiẋi +

6∑
j=1

ẏj ẏj , x2 ≡
3∑
i=1

xixi, y2 ≡
6∑
j=1

yjyj . (3)

The definition of the Poisson bracket {f, g} that we will be using is

{f , g} ≡ εrs√
w (σ)

∂rf ∂sg =
1√
w (σ)

(∂1f ∂2g − ∂2f ∂1g) , (4)

where d2σ =
√
w (σ) dσ1 dσ2 is the spatial volume element of the worldvolume

and εrs is the 2-dimensional Levi-Civita symbol. In a flat worldvolume it’s
w (σ) = 1 and the usual definition of the Poisson bracket is retrieved.

The Lagrangian equations of motion for the spatial coordinates x and y
corresponding to the Hamiltonian (2) are:

ẍi = {{xi, xj} , xj}+ {{xi, yj} , yj} −
µ2

9
xi +

µ

2
εijk {xj , xk} (5)

ÿi = {{yi, yj} , yj}+ {{yi, xj} , xj} −
µ2

36
yi. (6)

The coordinates x and y can also be shown to obey the Gauss law constraint:

3∑
i=1

{ẋi, xi}+

6∑
j=1

{ẏj , yj} = 0. (7)

3 The spherical ansatz

Let us make the following ansatz for the spatial coordinates x and y [9,10]:

xi ≡ x1i = x̃1i (τ) e1 (σ) , i = 1, . . . , q1 (8)

xq1+j ≡ x2j = x̃2j (τ) e2 (σ) , j = 1, . . . , q2 & q1 + q2 + q3 = 3 (9)

xq1+q2+k ≡ x3k = x̃3k (τ) e3 (σ) , k = 1, . . . , q3 (10)

1 Note also that there’s no distinction between upper and lower indices, so that these
will be henceforth used interchangeably.
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and

yi ≡ y1i = ỹ1i (τ) e1 (σ) , i = 1, . . . , s1 (11)

ys1+j ≡ y2j = ỹ2j (τ) e2 (σ) , j = 1, . . . , s2 & s1 + s2 + s3 = 6 (12)

ys1+s2+k ≡ y3k = ỹ3k (τ) e3 (σ) , k = 1, . . . , s3. (13)

The ansatz (8)–(13) splits the coordinates x and y into three groups

xai = x̃ai (τ) ea & ybj = ỹbj (τ) eb, (14)

where i = 1, . . . , qa, j = 1, . . . , sb, a, b = 1, 2, 3. Going over to spherical
coordinates, (σ1, σ2)→ (θ, φ), we define:2

(e1, e2, e3) = (cosφ sin θ, sinφ sin θ, cos θ), φ ∈ [0, 2π), θ ∈ [0, π] (16)

{ei, ej} = εijk ek,

∫
ei ej d

2σ =
4π

3
δij . (17)

Note that the Gauss law constraint (7) is automatically satisfied by the ansatz
(8)–(13). Now consider the following solutions:

x̃1 (τ) = eΩx1τ · x̃10, x̃2 (τ) = eΩx2τ · x̃20, x̃3 (τ) = eΩx3τ · x̃30 (18)

ỹ1 (τ) = eΩy1τ · ỹ10, ỹ2 (τ) = eΩy2τ · ỹ20, ỹ3 (τ) = eΩy3τ · ỹ30. (19)

As in the case of flat space (worked out in [11]) it can be shown that the radii

r2
x1 ≡ x̃2

1 =

q1∑
i=1

x̃10ix̃10i, r
2
x2 ≡ x̃2

2 =

q2∑
j=1

x̃20j x̃20j , r
2
x3 ≡ x̃2

3 =

q3∑
k=1

x̃30kx̃30k (20)

r2
y1 ≡ ỹ2

1 =

s1∑
i=1

ỹ10iỹ10i, r
2
y2 ≡ ỹ2

2 =

s2∑
j=1

ỹ20j ỹ20j , r
2
y3 ≡ ỹ2

3 =

23∑
k=1

ỹ30kỹ30k (21)

of the ansatz (18)–(19) can be determined (for all the antisymmetric matrices
Ωx1, Ωx2, Ωx3, Ωy1, Ωy2, Ωy3) in terms of the conserved angular momenta

(`x1)ij ≡ ˙̃x1ix̃1j − x̃1i
˙̃x1j , (`y1)ij ≡ ˙̃y1iỹ1j − ỹ1i

˙̃y1j (22)

(`x2)ij ≡ ˙̃x2ix̃2j − x̃2i
˙̃x2j , (`y2)ij ≡ ˙̃y2iỹ2j − ỹ2i

˙̃y2j (23)

(`x3)ij ≡ ˙̃x3ix̃3j − x̃3i
˙̃x3j , (`y3)ij ≡ ˙̃y3iỹ3j − ỹ3i

˙̃y3j , (24)

by minimizing the corresponding effective potential of the membrane. This is
completely equivalent to plugging the ansatz (18)–(19) into the equations of
motion (5)–(6) and determining the relation between the radii rx1, rx2, rx3,
ry1, ry2, ry3 and the components of the matrices Ωx1, Ωx2, Ωx3, Ωy1, Ωy2, Ωy3

(which in turn always combine to form the conserved angular momenta `x1,
`x2, `x3, `y1, `y2, `y3).

2 We use the volume element in (θ, φ) space which implies that
√
w (σ) = sin θ should

be used in the definition (4) of the Poisson bracket. For alternative parametrizations
such as

(e1, e2, e3) = (cn (φ|m) sn (θ|n) , sn (φ|m) sn (θ|n) , sn (θ|n)), (15)

where φ ∈ [0, 4K (m)) and θ ∈ [0, 2K (n)], the corresponding volume element is√
w (σ) = sn (θ|n) dn (θ|n) dn (φ|m).
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4 Effective potentials

The energy of the membrane (2) becomes:

E =
2πT

3

[
˙̃x2
1 + ˙̃x2

2 + ˙̃x2
3 + ˙̃y2

1 + ˙̃y2
2 + ˙̃y2

3 + x̃2
1x̃

2
2 + x̃2

2x̃
2
3 + x̃2

3x̃
2
1 + ỹ2

1 ỹ
2
2 + ỹ2

2 ỹ
2
3+

+ỹ2
3 ỹ

2
1 + x̃2

1

(
ỹ2

2 + ỹ2
3

)
+ x̃2

2

(
ỹ2

3 + ỹ2
1

)
+ x̃2

3

(
ỹ2

1 + ỹ2
2

)
+
µ2

9
x̃2+

+
µ2

36
ỹ2 − 2µ εijk x̃1ix̃2j x̃3k

]
. (25)

We now proceed to the following decomposition of the coordinates:

˙̃x2
1 ≡ ˙̃x1i

˙̃x1i = ṙ2
x1 +

`2x1

r2
x1

, ˙̃y2
1 ≡ ˙̃y1j

˙̃y1j = ṙ2
y1 +

`2y1

r2
y1

(26)

˙̃x2
2 ≡ ˙̃x2i

˙̃x2i = ṙ2
x2 +

`2x2

r2
x2

, ˙̃y2
2 ≡ ˙̃y2j

˙̃y2j = ṙ2
y2 +

`2y2

r2
y2

(27)

˙̃x2
3 ≡ ˙̃x3i

˙̃x3i = ṙ2
x3 +

`2x3

r2
x3

, ˙̃y2
3 ≡ ˙̃y3j

˙̃y3j = ṙ2
y3 +

`2y3

r2
y3

. (28)

Plugging (20)–(21) and (26)–(28) into (25), we find that the energy of the
membrane becomes

E =
2πT

3

[
ṙ2
x1 + ṙ2

x2 + ṙ2
x3 + ṙ2

y1 + ṙ2
y2 + ṙ2

y3 +
`2x1

r2
x1

+
`2x2

r2
x2

+
`2x3

r2
x3

+
`2y1

r2
y1

+
`2y2

r2
y2

+

+
`2y3

r2
y3

+ r2
x1r

2
x2 + r2

x2r
2
x3 + r2

x3r
2
x1 + r2

y1r
2
y2 + r2

y2r
2
y3 + r2

y3r
2
y1+

+r2
x1

(
r2
y2 + r2

y3

)
+ r2

x2

(
r2
y3 + r2

y1

)
+ r2

x3

(
r2
y1 + r2

y2

)
+
µ2

9
(r2
x1+

+r2
x2 + r2

x3) +
µ2

36

(
r2
y1 + r2

y2 + r2
y3

)
− 2µ εijkx̃1ix̃2j x̃3k

]
, (29)

so that the corresponding effective potential reads

Veff =
2πT

3

[
`2x1

r2
x1

+
`2x2

r2
x2

+
`2x3

r2
x3

+
`2y1

r2
y1

+
`2y2

r2
y2

+
`2y3

r2
y3

+ r2
x1r

2
x2 + r2

x2r
2
x3 + r2

x3r
2
x1+

+r2
y1r

2
y2 + r2

y2r
2
y3 + r2

y3r
2
y1 + r2

x1

(
r2
y2 + r2

y3

)
+ r2

x2

(
r2
y3 + r2

y1

)
+

+r2
x3

(
r2
y1 + r2

y2

)
+
µ2

9

(
r2
x1 + r2

x2 + r2
x3

)
+
µ2

36

(
r2
y1 + r2

y2 + r2
y3

)
−

−2µ εijkx̃1ix̃2j x̃3k

]
. (30)

The above potential (30) contains four different kinds of terms, either re-
pulsive or attractive: (1) kinetic/angular momentum terms (repulsive), (2)
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6 Axenides et al

quartic interaction terms (attractive), (3) mass terms (attractive), and (4) a
cubic Myers flux term (repulsive). The last two kinds of terms (i.e. the mass
terms (3) and the Myers term (4)) are µ-dependent and so they drop out in the
µ → 0 limit (flat space) that was studied in [11]. In both cases (either µ = 0
or µ 6= 0), it is the equilibration of attractive and repulsive forces that deter-
mines the extrema of the potential. The two extra repulsive/attractive terms
for µ 6= 0 (induced by the plane-wave background) increase the complexity of
the resulting dynamical system, as it will become apparent below.

There are three ways to distribute the so (3) coordinates xi (i = 1, 2, 3) into
the three groups that are specified by the units ei in (16), so that we can gener-
ally distinguish three main types of membrane configurations. The first two of
them (labelled types I and II below) describe rotating membranes (tops) that
are point-like (collapsed) in one or two so (3) directions and have a vanishing
Myers flux term. The third type (III) is probably the most interesting one as
it contains all four kinds of repulsive and attractive terms that we described
above and extends into the full geometric background of so (3)× so (6). Let us
now introduce these three types of configurations.

4.1 Type I: q1 = 3, q2 = q3 = 0

For q1 = 3, q2 = q3 = 0 we have

rx ≡ rx1, rx2 = rx3 = 0 & `x ≡ `x1, `x2 = `x3 = 0 (31)

and the flux term vanishes. The effective potential (30) of the membrane
becomes:

Veff =
2πT

3

[
`2x
r2
x

+
`2y1

r2
y1

+
`2y2

r2
y2

+
`2y3

r2
y3

+ r2
y1r

2
y2 + r2

y2r
2
y3 + r2

y3r
2
y1 + r2

x

(
r2
y2 + r2

y3

)
+
µ2r2

x

9
+
µ2

36

(
r2
y1 + r2

y2 + r2
y3

) ]
. (32)

Apart from the completely symmetric (single-radius) configuration r = rx =
ry1 = ry2 = ry3, ` = `x = `y1 = `y2 = `y3, the radii and the momenta of the
effective potential (32) may be grouped into 5 different axially symmetric (2-
radii) configurations and 4 more configurations with 3 different radii. Each of
these potentials possesses a local minimum that corresponds to a stationary top
solution with time-independent radius and nonzero total angular momentum.
There are no static solutions (i.e. having constant radius and zero angular
momentum) in this case.

4.2 Type II: q1 = 2, q2 = 1, q3 = 0

For q1 = 2, q2 = 1 and q3 = 0,

rx3 = 0 & `x2 = `x3 = 0 (33)
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and the flux term vanishes again. The effective potential (30) becomes:

Veff =
2πT

3

[
`2x1

r2
x1

+
`2y1

r2
y1

+
`2y2

r2
y2

+
`2y3

r2
y3

+ r2
x1r

2
x2 + r2

y1r
2
y2 + r2

y2r
2
y3 + r2

y3r
2
y1+

+r2
x1

(
r2
y2 + r2

y3

)
+ r2

x2

(
r2
y3 + r2

y1

)
+
µ2

9

(
r2
x1 + r2

x2

)
+

+
µ2

36

(
r2
y1 + r2

y2 + r2
y3

) ]
. (34)

Although again this case does not lead to any static configuration (with con-
stant radius and zero angular momentum), we may construct one single-radius
(r = rx1 = rx2 = ry1 = ry2 = ry3, ` = `x1 = `y1 = `y2 = `y3) solution, 13
axially symmetric (2-radii) tops and 21 tops with 3 different radii.

For example let us consider a type II configuration with all the so (6) vari-
ables set equal to zero:

x1 = x (τ) · e1, x2 = y (τ) · e1, x3 = z (τ) · e2, yi = 0, i = 1, . . . , 6, (35)

where the time-dependent part has the form (18). In this case the effective
potential (34) becomes:

Veff =
2πT

3

[
`2

x2 + y2
+
(
x2 + y2

)
z2 +

µ2

9

(
x2 + y2 + z2

) ]
, (36)

after setting `x1 = ` for simplicity. The corresponding extremisation condition
∇Veff = 0 implies

x z2 +
µ2x

9
− x `2

(x2 + y2)
2 = y z2 +

µ2y

9
− y `2

(x2 + y2)
2 = z

(
x2 + y2

)
+
µ2z

9
= 0,

which is solved by

x2 + y2 =
3`

µ
& z = 0. (37)

Complying with (18), we can choose e.g.:

x (τ) =

√
3`

µ
cos

µ τ

3
, y (τ) =

√
3`

µ
sin

µ τ

3
, z (τ) = 0. (38)

Equivalently we could have directly plugged (35) into the equations of mo-
tion (5)–(6):

ẍ · e1 = −x z2 · e1 −
µ2x

9
· e1 + µ y z · e3 (39)

ÿ · e1 = −y z2 · e1 −
µ2y

9
· e1 + µx z · e3 (40)

z̈ · e2 = −z
(
x2 + y2

)
· e2 −

µ2z

9
· e2. (41)

It is easily seen that any solution of the type (18) will again satisfy (37).
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8 Axenides et al

4.3 Type III: q1 = q2 = q3 = 1

For q1 = q2 = q3 = 1, we write:

x1 = rx1e1, x2 = rx2e2, x3 = rx3e3 & `x1 = `x2 = `x3 = 0. (42)

Note that rx1, rx2, rx3 are not radii anymore, but coordinates. The effective
potential (30) of the membrane can be written as:

Veff =
2πT

3

[
`2y1

r2
y1

+
`2y2

r2
y2

+
`2y3

r2
y3

+ r2
x1r

2
x2 + r2

x2r
2
x3 + r2

x3r
2
x1 + r2

y1r
2
y2 + r2

y2r
2
y3+

+r2
y3r

2
y1 + r2

x1

(
r2
y2 + r2

y3

)
+ r2

x2

(
r2
y3 + r2

y1

)
+ r2

x3

(
r2
y1 + r2

y2

)
+

+
µ2

9

(
r2
x1 + r2

x2 + r2
x3

)
+
µ2

36

(
r2
y1 + r2

y2 + r2
y3

)
− 2µrx1rx2rx3

]
. (43)

By combining the various radii (along with the corresponding angular mo-
menta) into groups of one, two or three, we obtain 30 different top configu-
rations, one of which corresponds to a completely symmetric top, 9 to axially
symmetric (2-radii) tops and 10 to tops that have 3 different radii.

5 Simple type III solutions

The so (3)× so (3)× so (3) ⊂ so (3)× so (6) invariant ansatz

xi = ũi (τ) ei, yj = ṽj (τ) ej , yj+3 = w̃j (τ) ej , i, j = 1, 2, 3 (44)

was studied in [12]. The ansatz (44) is obviously of the form (42) (type III)
and it describes rotating and pulsating membranes of spherical topology. The
corresponding Hamiltonian

H =
2πT

3

(
p̃2
u + p̃2

v + p̃2
w

)
+ U, (45)

is obtained by integrating out the worldvolume coordinates θ and φ. The
potential energy U reads

U =
2πT

3

[
ũ2

1ũ
2
2 + ũ2

2ũ
2
3 + ũ2

3ũ
2
1 + r̃2

1 r̃
2
2 + r̃2

2 r̃
2
3 + r̃2

3 r̃
2
1 + ũ2

1

(
r̃2
2 + r̃2

3

)
+

+ũ2
2

(
r̃2
3 + r̃2

1

)
+ ũ2

3

(
r̃2
1 + r̃2

2

)
+
µ2

9

(
ũ2

1 + ũ2
2 + ũ2

3

)
+

+
µ2

36

(
r̃2
1 + r̃2

2 + r̃2
3

)
− 2µũ1ũ2ũ3

]
, r̃2

j ≡ ṽ2
j + w̃2

j , j = 1, 2, 3. (46)

The manifest so (2)×so (2)×so (2) symmetry of the Hamiltonian (45)–(46)
with respect to the so (6) coordinates ṽi and w̃i implies that any solution of
the equations of motion preserves three so (2) angular momenta `i (i = 1, 2, 3).
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The kinetic terms of the Hamiltonian (45) can be expressed in terms of the
conserved angular momenta `i as

p̃2
v + p̃2

w =

3∑
i=1

(
˙̃r2
i +

`2i
r̃2
i

)
, (47)

leading to the effective potential

Veff = U +
2πT

3

(
`21
r̃2
1

+
`22
r̃2
2

+
`23
r̃2
3

)
. (48)

5.1 The so (3) symmetric membrane

Let us now consider the simplest possible subsystem of (44) where the so (6)
variables ṽi and w̃i are set to zero [12]:

ṽi = w̃i = 0, i = 1, 2, 3. (49)

Scaling out the mass parameter µ by setting

t = µτ, ũi = µui (50)

leads to the form

Veff =
2πTµ4

3

[
u2

1u
2
2 + u2

2u
2
3 + u2

1u
2
3 +

1

9

(
u2

1 + u2
2 + u2

3

)
− 2u1u2u3

]
(51)

of the membrane effective potential (48) and the Hamilton equations of motion,

u̇1 = p1, ṗ1 = −
[
u1

(
u2

2 + u2
3

)
+
u1

9
− u2u3

]
(52)

u̇2 = p2, ṗ2 = −
[
u2

(
u2

3 + u2
1

)
+
u2

9
− u3u1

]
(53)

u̇3 = p3, ṗ3 = −
[
u3

(
u2

1 + u2
2

)
+
u3

9
− u1u2

]
. (54)

The effective potential (51) is a particular instance of the generalized 3-dimensional
Hénon-Heiles potential that was introduced in [13],

VHH =
1

2

(
u2

1 + u2
2 + u2

3

)
+K3 u1u2u3 +K0

(
u2

1 + u2
2 + u2

3

)2
+

+K4

(
u4

1 + u4
2 + u4

3

)
, (55)

with K3 = −9, K0 = −K4 = 9/4. The critical points of the effective potential
(51) are:

u0 = 0, u1/6 =
1

6
· (1, 1, 1) , u1/3 =

1

3
· (1, 1, 1) . (56)

6 more critical points can be obtained by flipping the sign of exactly two ui’s.
This is consistent with the manifest tetrahedral (Td) symmetry of the potential
(51). The extrema u0 (point-like membrane) and u1/3 (Myers dielectric sphere)
are global degenerate minima of the potential while u1/6 is a saddle point:

Veff (0) = Veff

(
1

3

)
= 0, Veff

(
1

6

)
=

2πTµ4

64
. (57)
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10 Axenides et al

Radial spectrum [12] By radially perturbing the 9 critical points u0
i in (56) as

ui = u0
i + δui (t) , δui (t) =

6∑
k=1

cke
iλtξik, (58)

we may confirm the above conclusion by examining the corresponding Hessian
matrix. It turns out that u0 and u1/3 are global minima (positive-definite
Hessian) and u1/6 is a saddle point (indefinite Hessian). These results are
summarized in the following table 1.

critical point eigenvalues λ2 (#) stability

u0
1
9

(3) , 1
36

(6) center (S)

u1/6 − 1
18

(1) , 5
18

(2) , 1
12

(6) saddle point

u1/3
1
9

(1) , 4
9

(2) , 1
4

(6) center (S)

Table 1. Radial spectrum of the so (3) symmetric membrane.

Angular spectrum [14] We may also perform more general (angular/multipole)
perturbations of the following form:

xi (t) = x0
i + δxi (t) , i = 1, 2, 3, (59)

where δxi is expanded in spherical harmonics Yjm (θ, φ) as

xi (t) = µui (t) ei, x0
i ≡ µu0

i ei, δxi (t) = µ ·
∞∑
j=1

j∑
m=−j

ηjmi (t)Yjm (θ, φ) . (60)

For the critical points u0, u1/6, u1/3 we find the eigenvalues [12]:

u0 : λ2
P = λ2

± =
1

9
, λ2

θ =
1

36
(61)

u1/6 : λ2
P = 0, λ2

+ =
1

36
(j + 1) (j + 4) , λ2

− =
j (j − 3)

36
,

λ2
θ =

1

36

(
j2 + j + 1

)
(62)

u1/3 : λ2
P = 0, λ2

+ =
1

36
(j + 1)

2
, λ2
− =

j2

9
, λ2

θ =
1

36
(2j + 1)

2
, (63)

with multiplicities dP = 2j + 1, d+ = 2j + 3, d− = 2j − 1 and dθ = 6 (2j + 1),
respectively.

The critical point u0 (point-like membrane) is obviously stable. u1/3 has
a zero mode of degeneracy 2dP while all its other eigenvalues are stable for
j = 1, 2, . . . u1/6 has one 2dP -degenerate zero mode for every j and a 10-fold
degenerate zero mode for j = 3. It is unstable for j = 1 (2-fold degenerate) and
j = 2 (6-fold degenerate). The above results were first obtained by [5] from the
matrix model. In the flat-space limit (µ→ 0), we recover the results of [15,16].
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5.2 The so (3) × so (3) × so (3) symmetric membrane

Similar perturbative analyses can be carried out in the so (3)× so (6) sector. A
solution of the corresponding equations of motion is given by

u0
i = u0, v0

j (t) = v0 cos (ωt+ ϕj) , w0
j (t) ≡ v0

j+3 (t) = v0 sin (ωt+ ϕk) , (64)

where (u0, v0) are the critical points of the axially symmetric potential

V ≡ Veff

2πTµ4
= u4+2u2v2 + v4 +

u2

9
+
v2

36
− 2u3

3
+
`2

v2
(65)

and `µ3 ≡ `1 = `2 = `3. It can be proven that the critical points (u0, v0) always
lie within the interval:

1

6
≤ u0 ≤

1

3
& 0 ≤ v0 ≤

1

12
. (66)

Radial spectrum [12] To obtain the radial spectrum we set

ui = u0
i + δui (t) , vi = v0

i (t) + δv′i (t) , wi = w0
i (t) + δw′i (t) , (67)

finding six zero eigenvalues and four nonzero ones (quadruply and doubly de-
generate):

λ2
1± =

5u0

2
− 1

9
±
√

1

92
− u0

9
− 5u2

0

12
+ 4u3

0 (68)

λ2
2± =

5u0

2
− 5

18
±
√

52

182
− 35u0

18
+

163u2
0

12
− 20u3

0. (69)

The plots of these eigenvalues can be found in the following figure 1.

u0 =
1

6
u0 =

1

3
ucrit

0.10 0.15 0.20 0.25 0.30 0.35
u0

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

λ2(u0)

Fig. 1. Radial spectrum of the so (3)× so (6) symmetric membrane.

Angular spectrum [14] Going further, we again set out to perform angular/multipole
perturbations of the form:

xi = x0
i + δxi, i = 1, 2, 3 & yk = y0

k + δyk, k = 1, . . . , 6, (70)
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where the δxi, δyk are expanded around the classical solution,

x0
i = µu0ei, i = 1, 2, 3, y0

i = µv0
i (t) e1, i = 1, 2 (71)

y0
k = µv0

k (t) e2, k = 3, 4 (72)

y0
l = µv0

l (t) e3, l = 5, 6, (73)

in spherical harmonics Yjm (θ, φ):

δxi = µ ·
∑
j,m

ηjmi (τ)Yjm (θ, φ) , δyk = µ ·
∑
j,m

εjmk (τ)Yjm (θ, φ) (74)

δyl = µ ·
∑
j,m

ζjml (τ)Yjm (θ, φ) , (75)

for i = 1, 2, 3, k = 1, 3, 5, l = 2, 4, 6. We find that one of the eigenvalues always
vanishes, two others are given by the following analytic expression

λ2
P =

1

2

(
j2 + j + 2

)
u0−

1

18

(
1 + j (j + 1)±

±3
√

144 (j2 + j − 2)u3
0 − 12 (j2 + j − 14)u2

0 − 24u0 + 1

)
, (76)

while 6 more eigenvalues λ± are also known in closed forms but are too compli-
cated to be included here. The corresponding multiplicities of the eigenvalues
are dP = 2j + 1, d+ = 2j + 3, d− = 2j − 1. For j = 1 four eigenvalues vanish,
while two others coincide with the eigenvalues (68)–(69) that were found from
radial perturbations:

λ2
P = 4u0 +

1

3
, λ2

+ =
5u0

2
− 1

9
±
√

1

92
− u0

9
− 5u2

0

12
+ 4u3

0 (77)

λ2
− =

5u0

2
− 5

18
±
√

52

182
− 35u0

18
+

163u2
0

12
− 20u3

0. (78)

For j = 2 there’s one zero eigenvalue while λP > 0. We can also plot the j = 2
eigenvalues of λ± (figure 2):

0.10 0.15 0.20 0.25 0.30 0.35
u0

0.5

1.0

1.5

2.0

λ2(u0)

0.10 0.15 0.20 0.25 0.30 0.35
u0

-0.5

0.5

1.0

1.5

2.0

λ2(u0)

Fig. 2. λ2
± for j = 2 as a function of u0.

• The squared nonzero j = 1 eigenvalues are all positive/stable in the interval
(66), except λ2

−(−) which is positive/stable only for ucrit < u0 < 1/3, where

ucrit ≡ 1
60

(
11 +

√
21
)
.
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• For j = 2, the λP , λ+ and one of the λ− squared eigenvalues are pos-
itive/stable in the interval (66). The remaining λ2

− eigenvalue is nega-
tive/unstable in the interval 1

6 ≤ u0 ≤ 0.207245 < ucrit.

• For j ≥ 3 all the squared eigenvalues are non-negative inside the interval
(66) and so the system is stable .

Here’s a summary of the angular/multipole spectrum (table 2):

eigenvalues j = 1 j = 2 j ≥ 3 degeneracy

λ2
P 0, 0,+ 0,+,+ 0,+,+ dP = 2j + 1

λ2
+ 0,+,+ +,+,+ +,+,+ d+ = 2j + 3

λ2
− 0,+, {0,±} +,+, {0,±} +,+,+ d− = 2j − 1(positive for

u0 > ucrit

) ( positive for
u0 > 0.207245

)
Table 2. Angular spectrum of the so (3)× so (6) symmetric membrane.

Higher-order perturbations [17] Beyond linearized perturbation theory (always
inside the interval (66)), we anticipate a cascade of instabilities that originates
from the j = 1, 2 multipoles and propagates towards all higher modes (j =
3, 4, . . .). The perturbative expansion becomes

xi =

∞∑
n=0

εnδxni = x0
i +

∞∑
n=1

εnδxni , i = 1, 2, 3 (79)

yi =

∞∑
n=0

εnδyni = y0
i +

∞∑
n=1

εnδyni , i = 1, . . . , 6. (80)

It follows that any given mode j at any given order n in perturbation theory
couples to all the modes of the previous orders 1, . . . , n−1 through an effective
forcing term that emerges in the corresponding system of fluctuation equations.
The perturbations are expanded in spherical harmonics as

δxni = µ ·
∑
j,m

ηnjmi (τ)Yjm (θ, φ) , ηnjmi (0) = 0, i = 1, 2, 3 (81)

δyni = µ ·
∑
j,m

θnjmi (τ)Yjm (θ, φ) , θnjmi (0) = 0, i = 1, . . . , 6. (82)

For example it can be shown that the (n = 1, j = 1, 2) instabilities we found
above couple to every mode (j = 1, 2, . . .) of the second order (n = 2) in
perturbation theory.
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Hopf bifurcation analysis for the
Fitzhugh-Nagumo model of a spiking neuron

Ilknur Kusbeyzi Aybar
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Abstract. The Fitzhugh-Nagumo model, which describes a pulse transmission ac-
tivity in a neuron, is first called the Bonhoeffer-van der Pol model since it is originally
transformed from the well-known van der Pol model. The complexity of the neural
dynamical models consist of multi-parameter nonlinear systems often allow studying
only a particular case for some given values of parameters and prevent obtaining gen-
eral results. In this study, we present general parameter regions for the existence and
the stability of Hopf bifurcation for the Fitzhugh-Nagumo model.
Keywords: Fitzhugh-Nagumo model, Limit cycle, Stability, Periodic solutions.

1 Introduction

Neurons, the smallest members of the brain, transmit information between
each other through electrical activities. The electrical activities of a single neu-
ron can be modeled and analyzed by dynamical systems. The communication
among neurons observed as firing or spikes occurs as an oscillation formation
or loss around a singular point of the dynamical system, i.e., Hopf bifurcation,
when a parameter exceeds a threshold value.

The Fitzhugh-Nagumo model, which was proposed by R. Fitzhugh in 1961
and simulated by J. Nagumo et al. in 1962, is governed by the ODE system

dx

dt
= x(x− a)(1− x)− y = F (x, y),

dy

dt
= ε(x− γy) = G(x, y),

(1)

where state variables x(t) and y(t) represent the change in the membrane volt-
age (action potential) and the change in the number of open potassium channels
on the membrane of a single neuron, respectively, over time. In this model, the
voltage passes the threshold value a; spiking occurs, then it starts to decrease
and stabilizes at the neuron membrane’s resting potential. The parameter ε
denotes the speed of the change in the number of open ion channels. The
parameter γ states how strongly y depends on x. All system parameters are
assumed to be positive, except for the parameter a, which can be negative.

2 Dynamics of the Fitzhugh-Nagumo model

The eigenvalues of the Jacobian matrix can be calculated at the singular points
to determine whether the system is stable or unstable at that point. The in-
vestigation of the stability for a dynamical system is important because by
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this analysis it is then possible to know if all nearby trajectories approach that
point of singularity. If the real parts of the eigenvalues of the system’s Jaco-
bian matrix are all negative at that point, the system is stable at this point of
singularity; otherwise, it is unstable at that point[8]. If the real parts of the
eigenvalues of the Jacobian matrix are a pair of pure imaginary values, then
the phenomenon called Hopf bifurcation occurs at that point, which implies
that at that point, the system is oscillating, that is, this singularity point is
an oscillatory solution of the system. The limit cycle can be either stable or
unstable, depending on the behaviour of the system. If all nearby trajectories
approach the limit cycle inward and outward, it is a stable limit cycle. In order
to determine the parameter regions for the existence of a stable limit cycle, we
calculate the first Lyapunov coefficient[4]. This study contributes to the com-
prehension of the electrical activities of neurons by using the dynamical analysis
methods since the spikes in the communication of neurons are mathematically
stable oscillatory solutions.

Proposition 1. System (1) has three singular points E0 = (0, 0),

E− = (
1

2
(1 + a−

√
(a− 1)2 − 4

γ
),

1

2γ
(1 + a−

√
(a− 1)2 − 4

γ
)),

and

E+ = (
1

2
(1 + a+

√
(a− 1)2 − 4

γ
),

1

2γ
(1 + a+

√
(a− 1)2 − 4

γ
)).

2.1 System dynamics at E0

At E0, the membrane voltage is zero, and the ion channels are all closed. The
eigenvalues of the Jacobian matrix at E0, which is at the resting potential, are

λ1,2 =
1

2
(−a− εγ ±

√
(a− εγ)2 − 4ε). (2)

Proposition 2. The singular point E0 is a stable singular point when the sys-
tem parameters a, ε, and γ are all positive or

−γε < a ≤ 0.

Theorem 1. According to the eigenvalues given in (2), system (1) exhibits
Hopf bifurcation when

a < 0, ε > a2, a = −εγ. (3)

Proof. To investigate Hopf bifurcation at E0, we accept conditions (3) and
calculate the first Lyapunov coefficient at this point. We look for a Lyapunov
function of the form

h(x, y) = αx2 + βxy + σy2 + h.o.t.

that satisfies

∂h

∂x
F (x, y) +

∂h

∂y
G(x, y) = g1(x2 + y2)2 + .... (4)
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By solving (4) together with (1), we obtain

α =
βε

2a

and

σ = − β

2εγ
.

The quadratic form

4ασ − β2 = −4 +
4

εγ2

is positive-definite when we choose β = 2 because of condition (3) which reduces
to

ε > 0, 0 < γ <

√
1

ε

in this case. We calculate the first Lyapunov coefficient as

g1 =
6 + 2γ(εγ(1− 2εγ)− 2)

γ(3 + ε(2 + ε(3 + 4γ2)))
. (5)

Stable oscillations are indicated by a negative first Lyapunov coefficient. There-
fore, we study the case g1 < 0 together with the conditions given in (3) and we
conclude in the following Theorem.

Theorem 2. System (1) exhibits supercritical Hopf bifurcation when one of
the following cases are satisfied:

(i)0 < γ < 1,
1

4γ
+

1

4

√
−3(

(5γ − 8)

γ3
) < ε <

1

γ2
,

(ii)1 < γ ≤ 3

2
,

1

4γ
+

1

4

√
−3(

5γ − 8

γ3
) < ε <

1

γ2
,

(iii)
3

2
< γ ≤ 8

5
, 0 < ε <

1

4γ
− 1

4

√
−3(

5γ − 8

γ3
),

(iv)
3

2
< γ ≤ 8

5
,

1

4γ
+

1

4

√
−3(

5γ − 8

γ3
) < ε <

1

γ2
,

(v)γ >
8

5
, 0 < ε <

1

γ2
.

(6)

Example 1. To demonstrate supercritical Hopf bifurcation at the origin we
choose the parameter set (a, ε, γ) = (−1.75, 0.5, 3.5). The eigenvalues of the
Jacobian matrix are λ1,2 = ±0.661438i. In Fig. 1, we illustrate that system
(1) exhibits stable oscillatory regime, i.e. limit cycle. The trajectories outside
and inside approach to the limit cycle. In Fig. 1. (a) we have two initial points,
one at the outside, and one at the inside of the limit cycle. This is clearly ob-
vious since the first Lyapunov coefficient at this point is g1 = −0.0127119, as
we obtain by (5). In Fig. 1. (b), we choose ten different initial points.
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Fig. 1. (a) The supercritical Hopf bifurcation of system (1) when (a, ε, γ) =
(−1.75, 0.5, 3.5) around the origin. (b) The trajectories moving towards the limit
cycle from ten different initial points outside.

2.2 System dynamics at E− and E+

In this section, we investigate the local dynamics of system (1) at the singu-
lar point E−. However, same results are obtained for the singular point E+.
First, we make assumption that the state variables and parameter values to
be real numbers to represent realistic values, which means that the expressions
in the root must be nonnegative. For this reason, we assume the square root
terms in the singular points are positive or at least zero. Hence, we begin our
investigation for Hopf bifurcation at E± by accepting the condition

∆ = (a− 1)2γ − 4 ≥ 0. (7)

The eigenvalues of the Jacobian matrix at E− are

λ1,2 =
1

4γ
(2−∆− 2εγ2 + (1 + a)

√
γ∆

± 1

2

√
−32εγ2(∆− (1 + a)

√
γ∆) + 4(2−∆− 2εγ2 + (1 + a)

√
γ∆)2).

(8)
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Proposition 3. E− is a stable singular point under one of the following cases:

i.a < 1, ∆ = 0, ε >
2−∆
2γ2

,

ii.a < 1, ∆ > 0, ε >
2−∆+

√
γ∆(1 + a)

2γ2
,

iii.a > 1, ∆ = 0, ε >
2−∆
2γ2

,

iv.a > 1, ∆ > 0, ε >
2−∆+

√
γ∆(1 + a)

2γ2
.

(9)

Example 2. As an example of Proposition (3), we consider the parameters
(a, ε, γ) = (−1, 0.32, 1.31). For this parameter set, system (1) is rewritten
as

dx

dt
= x− x3 − y,

dy

dt
= 0.32x− 0.4192y.

(10)

The singular points of system (10) are E− = (−0.486458,−0.371342), E0 =
(0, 0), and E+ = (0.486458, 0.371342). The eigenvalues of the Jacobian matrix
at E− and E+ are λ1,2 = −0.0645618 ± 0.440717i. Since the real parts of the
eigenvalues are negative, E− and E+ are stable singular points. The origin is a
saddle point with a positive, λ1 = 0.718807, and a negative, λ2 = −0.138007,
real eigenvalue. The phase portrait for this parameter set is given in Fig. 2.
The solid lines indicate the voltage, x(t), and the dashed lines indicate the
number of open channels, y(t). We observe that the state variables end up at
E− and E+, after little fluctuations.

Hopf bifurcation indicates the birth or death of a periodic solution at a
singular point under a small perturbation of a parameter. Hopf bifurcation
occurs when a complex conjugate pair of eigenvalues of the Jacobian matrix at
a singular point becomes pure imaginary. In this case, a limit cycle, which is
a stable (unstable) isolated periodic orbit, exists, and the bifurcation is called
supercritical (subcritical) Hopf bifurcation.

Considering assumption (7), we find the conditions for the real part of (8)
to be zero and the the expression inside the root to be negative so that the
eigenvalues (8) are pure imaginary.

Theorem 3. System (1) undergoes Hopf bifurcation at E− when a = −1 if

1 < γ <
3

2
, ε =

3− 2γ

γ2
. (11)

Moreover, the Hopf bifurcation at E− is always supercritical (i.e. there exists
a stable limit cycle.).

Proof. To investigate the existence and the stability of Hopf bifurcation, we
apply a change of variables to move E− to the origin by the linear transforma-
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Fig. 2. (a) Stable spiral foci at E− = (−0.486458,−0.371342), and E+ =
(0.486458, 0.371342) for system (10). (b) Time series plots for the case given in
(a). (c) The case given in (a) for different initial points. (d) Time series plots of (c).

tion

x = u+
1

2
(1 + a−

√
∆

γ
),

y = v +
1

2γ
(1 + a−

√
∆

γ
),

and obtain the following system:

dx

dt
=

1

2γ
((2−∆+ (1 + a)

√
γ∆)x+ (−(1 + a)γ + 3

√
γ∆)x2 − 2γx3 − 2γy),

dy

dt
= ε(x− γy).

(12)
System (12) has Hopf bifurcation at the origin when a = −1. The eigenval-

ues of the Jacobian matrix at the singular point at the origin are

λ1,2 =
1

2γ
(3− γ(2 + εγ) +

√
9 + γ(−12 + γ(4 + ε(2 + γ(−4 + εγ)))). (13)

The eigenvalues given in (13) are pure imaginary if

1 < γ <
3

2
, ε =

3− 2γ

γ2
. (14)
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Hence, system (12) exhibits Hopf bifurcation. Under these conditions, we have
positive definite quadratic form.

We observe that when ∆ = 0, there is no Hopf bifurcation at the system.
Hence, we consider ∆ > 0. We also consider a 6= 1 for the system to be defined.

Calculating the first Lyapunov coefficient at this point we have

α =
βεγ

−2−∆− (1 + a)
√
γ∆

ε =
2−∆+ (1 + a)

√
γ∆

2γ2

σ = − be

2εγ

We assume the coefficient as β = 2. Then, we obtain

g1 = − 24(−1 + γ)γ3

27 + γ(−36 + γ(54 + γ(−52 + 19γ)))
(15)

for the first Lyapunov coefficient of system (1) at E−. When g1 given in (15)
is negative, then there exists a supercritical Hopf bifurcation for system (1).
When we solve

g1 < 0

and

1 < γ <
3

2
, ε =

3− 2γ

γ2

together, we obtain again condition (14). Therefore, if there is Hopf bifurcation
at E− and E+, it is a supercritical Hopf bifurcation. Hence, there exists a stable
limit cycle.

We explain Theorem (3) with the following numerical example.

Example 3. As an example for Hopf bifurcation, we choose parameter values
(a, ε, γ) = (−1, 0.32, 1.25), satisfying (3). In this case, system (1) can be written
as

dx

dt
= x− x3 − y,

dy

dt
= 0.32x− 0.4y.

(16)

System (16) has the singular points E− = (−0.447214,−0.357771), E0 =
(0, 0), and E+ = (0.447214, 0.357771). System (16) possesses Hopf bifurcation
at the singular points E− and E+, which are located symmetrically on the
trajectory plot. This result is due to the eigenvalues of the Jacobian matrix,
which are λ1,2 = ±0.4i. The stability of Hopf bifurcation is determined by
the first Lyapunov coefficient is g1 = −1.04639 as calculated from (15). At
the origin, E0 is a saddle point represented by a positive (λ1 = 0.712311) and
a negative (λ2 = −0.112311) real eigenvalues. The stable limit cycle for this
example is illustrated in Fig. 3. In Fig. 3. (a), the blue star is at (−0.9, 0.19)
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and the red star is at (0.5,−0.2). The trajectories initiating from the blue and
the red star approach towards the limit cycle. In Fig. 3. (b), the voltage, x(t),
is represented by a solid line, and the number of open ion channels, y(t) is
represented by a dashed line. For the two initial points, the blue and the red
star, we see the oscillations in x(t) and y(t) for the phase portrait given in Fig.
3. (a). In Fig. 3. (c), two points move along the limit cycle. In Fig. 3. (d),
we observe the oscillations of the state variables for the phase portrait given in
Fig. 3. (c).
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Fig. 3. (a) The stable limit cycle for Example 3 when (a, ε, γ) = (−1, 0.32, 1.25)
around E+ = (0.447214, 0.357771) and E− = (−0.447214,−0.357771). (b) The oscil-
lations in the state variables, i.e. the voltage and the number of open channels given
in (a). (c) The trajectories moving towards the limit cycle. (d) The oscillations in
the state variables, i.e. the voltage and the number of open channels given in (c).
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Abstract. Dynamical systems contribute to the mathematical modeling of chemical
reactions of biological or ecological phenomena producing limit cycle oscillations.
In this study, we present a computational approach to examine the bifurcations of
limit cycles of the two-dimensional simple chemical reaction model known as the
Schnakenberg model. With our approach, we obtain conditions on parameters of
the system of the chemical reaction model which gives Hopf bifurcation. Using the
Lyapunov function we show the stability of Hopf bifurcation. We illustrate the results
with a numerical example.
Keywords: Schnakenberg, Limit cycle, Chemical reaction, Lyapunov function.

1 Introduction

During biochemical reactions, which are the transformations of molecules to
other molecules inside the cell, enzymes play roles of biological catalysts and
change concentration rates[10]. Biochemical reactions enable cell functions such
as digestion and respiration to reproduction and contribute to maintaining the
life processes of living organisms. The biochemical reaction, named glycolysis,
which is the destruction of glucose to enzymatic acid with enzymes to generate
energy, happens in all living organisms. Moreover, in all living organisms, the
same enzymes act in this reaction. The fluctuations in the concentrations of the
substances lead to glycolytic oscillations, which depend on the concentration
rates. The glycolytic oscillations were first observed experimentally by Duysens
and Amesz[2]. This phenomenon is known as a fascinating biochemical reac-
tion represented mathematically by a generalized version of the Schnakenberg
model[13].

2 The Schnakenberg model

In 1978, J. Schnakenberg introduced the simple chemical reaction system with
a limit cycle behaviour, the so called Schnakenberg model, an autocatalytic
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chemical reaction model with oscillatory behaviour. This model is characterized
by the following three chemical reactions that involve two chemical components
and two chemical resources:

A
 X,B → Y, 2X + Y → 3X.

The dynamical system for this chemical reaction is obtained by considering the
state variables x and y as the concentrations at a given time of the chemical
substances X and Y which leads to the following system of ordinary differential
equations:

dx

dt
= x2y − x+ b,

dy

dt
= −x2y + a.

(1)

Here, the parameters a > 0 and b > 0 denote the concentration rates of the
chemical resources A and B, respectively.

To demonstrate the oscillations in this model, Hwang et al. [4] showed that
the dimensionless system of the Schnakenberg model possesses at most one
limit cycle in R2

+. The nonexistence and existence of a positive non-constant
steady-state solution to the Schnakenberg system are studied by Li, in 2011
[6]. In this paper, we investigate Hopf bifurcation for the Schnakenberg model
by computing the Lyapunov function[12].

System (1) has one unique singular point at E = (a + b, a
(a+b)2 ), with the

eigenvalues of Jacobian matrix given as

λ1,2 =
−1

2
(1 + (a+ b)2 ±

√
k(a, b)), (2)

where
k(a, b) = (−a+ b+ (a+ b)3)2 − 4(a+ b)4. (3)

It is obvious that these eigenvalues are pure imaginary if

1 + (a+ b)2 = 0, k(a, b) < 0, a, b > 0,

which simplifies to the condition 0 < a < 1 and (a + b)3 = a − b. In this case
the singularity at E can either be a center (all trajectories are closed), or a
focus (all trajectories are spirals)[11]. When the condition

(a+ b)(1 + (a+ b)2) 6= 0

is satisfied, the singular point at E is a focus, if (a + b)(1 + (a + b)2) < 0
all trajectories in a neighborhood of E are moving towards the singularity E
(stable focus) and if (a+ b)(1 + (a+ b)2) > 0 all trajectories in a neighborhood
of E are moving away the singularity at E. For instance, Figure 1(a) shows
stable limit cycle of the system (1) with a = 0.6 and b = 0.17037459017229974
and eigenvalues are λ1,2 = −0.0178966 ± 0.77016668i and Figure 1(b) shows
stable limit cycle of the system (1) with a = 0.6 and b = 0.15037459017229974
and eigenvalues are λ1,2 = 0.01806962± 0.75015699i.[9].
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Fig. 1. (a) Stable and (b) Unstable foci of system (1).

3 The existence of Hopf bifurcation

To study Hopf bifurcation for system (1), we first move the singular point E
to origin by the linear transformation

x→ X + (a+ b) and y → Y +
a

(a+ b)2
, (4)

and obtain

ẋ =
1

a+ b
((a+ b)x2y + ax2 + +2(a+ b)2xy + (a− b)x+ (a+ b)3y) = F (x, y)

ẏ =
−1

a+ b
((a+ b)x2y + ax2 + +2(a+ b)2xy + 2ax+ (a+ b)3y) = G(x, y),

(5)
where X is rewritten as x, and Y as y. The necessary condition for the existence
of Hopf bifurcation at the origin for system (5) is when the trace of the linear
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approximation of system (5)

a− b
a+ b

− (a+ b)2,

is zero. This condition also satisfies that the real part of the eigenvalues is zero.
The second necessary condition is for k(a, b) given in (3) to be negative. These
two conditions, with additional two on parameters a and b for the chemical
system, a, b > 0, form the following system of semi-algebraic equations:

(a > 0) ∧ (b > 0) ∧ ((a+ b)3 − a+ b = 0) ∧
(((a+ b)3 − a+ b)2 − 4(a+ b)4 < 0).

(6)

System (16) can be solved using Mathematica routine Reduce [8] and we obtain

0 < a < 1 and (a+ b)3 = a− b. (7)

A commonly used approach for the determination of Hopf bifurcation is the
computation of normal forms. However, in this work, we adopt an approach
employing the Lyapunov function which we describe now. For a system

ẋ = −y + P (x, y) = P1(x, y),

ẏ = x+Q(x, y) = Q1(x, y),
(8)

we can always find a function of the form

Ψ(x, y) = x2 + y2 +
∑
j+k=3

ψjkx
jyk,

such that

∂Ψ

∂x
P1(x, y) +

∂Ψ

∂y
Q1(x, y) = g1(x2 + y2)2 + g2(x2 + y2)3 + . . . . (9)

Based on the Lyapunov Theorem of asymptotic stability [7], we determine
the type of the focus stability by using the first nonzero coefficient gi of the
extension of

∂Ψ

∂x
P1(x, y) +

∂Ψ

∂y
Q1(x, y).

Then, a focus is stable if gi is negative, and unstable if gi is positive[1].
If the system is of the form

ẋ = a1x+ b1y + P (x, y) = P1(x, y),

ẏ = c1x− a1y +Q(x, y) = Q1(x, y),
(10)

for which the trace of the linear approximation matrix is zero, the resulting
expressions involve radicals. To avoid this, we search for a positive-definite
Lyapunov function of the form

Ψ(x, y) = αx2 + βxy + γy2 +
∑
j+k=3

ψjkx
jyk
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which satisfies (9). This is the case if the conditions

α = −c1β
2a1

, γ =
b1β

2a1
(11)

hold, and it is known that the quadratic form

αx2 + βxy + γy2 (12)

is positive-definite if α > 0 and 4αγ−β2 > 0. Inserting (11) into the expression

4αγ − β2, (13)

we obtain 4αγ − β2 =
−β2(a21+b1c1)

a21
, and when the origin is a center or a focus

for system (10), the quadratic form (12) is positive-definite [14].

Theorem 1. The singular point at the origin (or at E) of system (5) (or (1))
satisfying conditions (7) is a stable focus.

Proof. When (16) are satisfied, the eigenvalues of the linear approximation
matrix of system (1) are

λ1,2 = ±
√
−4(a+ b)4 + (−a+ b+ (a+ b)3)2

2(a+ b)
.

We look for a Lyapunov function up to degree 8,

Ψ8(x, y) =

8∑
k+s=2

ψksx
kys (14)

satisfying the equation

∂Φ8

∂x
F (x, y) +

∂Φ8

∂y
G(x, y) = g1(x2 + y2)2 + g2(x2 + y2)3 + g3(x2 + y2)4. (15)

One can see that

α =
aβ

a− b
and γ =

β

2
.

This condition can be determined by equating the coefficients of the same
monomials on both sides of equation (15).

Let β = 2, then α = 2a
a−b , γ = 1, and 4αγ−β2 = 4(a+b)

a−b > 0. For a > b, the
quadratic form (12) of (14) is positive-definite.
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The first nonzero coefficient gi is

g1 = 4a(a+ b)2(12a14 + 168a13b+ b6(1 + b2)(2b2 − 5)(1 + 2b2)(1 + 3b2)+

+ 2a12(546b2 − 1) + 6a11b(728b2 − 5) + 7a9b(5− 110b2 + 3432b4)+

+ 2a10(1− 99b2 + 6006b4) + a7(−57b+ 300b3 − 3564b5 + 41184b7)+

+ a5b(−3 + 167b2 − 966b4 − 4356b6 + 24024b8) + ab3(3 + 5b2 − 123b4−
+ 325b6 − 90b8 + 168b10) + a3b(9− 2b2 + 13b4 − 1860b6 − 1430b8 + 4368b10)+

+ a8(−17 + 33b2(5− 60b2 + 1092b4)) + a6(6 + b2(−13 + 924b4(−5 + 39b2)))+

+ a4(−3 + b2(−25 + 3b2(75− 630b2 − 990b4 + 4004b6)))+

+ a2b2(−9 + b2(24 + b2(−167 + 42b2(−25− 11b2 + 26b4)))))/

((a− b)(2a6 + 12a5b+ b2(2 + b2)(1 + 2b2) + a4(30b2 − 3) + a3(−4b+ 40b3)+

+ a2(2 + 6b2 + 30b4) + 4ab(−1 + 3(b2 + b4)))(3a12 + 36a11b+ b6(1 + b2)(3 + b2)

(1 + 3b2) + 10a9b(13 + 66b2) + a10(13 + 198b2) + 12a7b(9 + 130b2 + 198b4)+

+ a8(17 + 585b2 + 1485b4) + 2ab5(3 + 42b2 + 65b4 + 18b6)+

+ 4a3b3(5 + 113b2 + 390b4 + 165b6) + a2b4(5 + 248b2 + 585b4 + 198b6)+

+ a6(11 + 304b2 + 2730b4 + 2772b6) + a5(38b+ 508b3 + 3276b5 + 2376b7)+

+ 3a4(16 + 5b2(3 + 38b2 + 182b4 + 99b6)))).

The semi-algebraic system

(g1 ≥ 0) ∧ (a > 0) ∧ (b > 0) ∧ ((a+ b)3 − a+ b = 0) ∧
(((a+ b)3 − a+ b)2 − 4(a+ b)4 < 0).

(16)

is an unsolvable system (checked with Reduce of Mathematica). Since g1 < 0,
the derivative with respect to a vector field is negative-definite. Hence the focus
is stable[5].

Next theorem summarizes the conditions for the existence of Hopf bifurca-
tion in system (1).

Theorem 2. For the parameters, a and b, that satisfy the conditions given
in (7), Hopf bifurcation can occur at the singular point E = (a + b, a

(a+b)2 ) of

system (1). The bifurcation is always supercritical, i.e., a stable limit cycle is
born from E.

Proof. As demonstrated in the proof of the Theorem 1, the singular point that
satisfies conditions (7) is a stable focus. By slightly varying the parameter b,
we slightly perturb the system (1), changing the real parts of the eigenvalues
(2) to positive. Hence, point E becomes an unstable focus, and the results is a
stable limit cycle[3].

3.1 Numerical example

To show the existence of stable limit cycles, we choose parameters a and b as
a = 0.6 and b = 0.16037459017229974. The corresponding system (1) has sin-
gular point at E = (0.760375, 1.03776), the eigenvalues given in (2) are λ1,2 =
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±0.760375i and the coefficient g1 of (15) is negative, g1 = −0.17187 < 0. As we
can see in Fig. 2. (a), the trajectories move towards the singular point E, i.e. E
is stable focus. Now, we perturb b slightly as b = 0.16037459017229974− 1

100 =
0.150375. Then, eigenvalues become λ1,2 = 0.0180689±0.750157i with positive
real parts. When we choose initial point (0.7, 1.05), we see that the trajectory
moves away from singular point E, on the other hand, the second trajectory
plotted from another initial point (0.6, 0.6) moves towards the singular point
E. Both trajectories approach to the limit cycle as seen in Fig. 2. (b).

Note that if the eigenvalues are pure imaginary, the local phase portrait
in the neighbourhood of the singularity can not be a center, since g1 6= 0 for
positive values of a and b for system (1).

Fig. 2. (a) Stable focus for parameter values a = 0.6 and b = 0.16037459017229974.
(b) A supercritical Hopf bifurcation appearing for system (1) with a = 0.6 and b =
0.150375.
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Headings content 

Abstract 

2.1 The internal Dirichlet problem and fractality of boundary condition  

2.2 The internal Dirichlet problem on the nearly circular domain bounded 

by fractal curve  

References 
 
Abstract 
In this chapter influence of fractality on solution of the two-dimensional in-

ternal Dirichlet problem is analyzed. Two different situations are considered 
namely the first of them deals with fractal boundary condition on the unit disk. In 
this case exact solution of the Laplace equation proves to obey to some analog of 
the de Rham functional equation. Also norm and the Dirichlet integral for this so-
lution has been estimated. In the second situation boundary condition is supposed 
to be regular but boundary of the domain is fractally perturbed. For clarification 
of this case both approximate conformal mapping technique and the Potapov con-
cept of physical fractals has been applied.   

 
Abbreviations 
 

IDP – the internal Dirichlet problem. 
WF – the Weierstrass function. 

TWF – the truncated Weierstrass function. 
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2.1 The internal Dirichlet problem and fractality 
of boundary condition  

 
In this section we discuss the internal Dirichlet problem (IDP) on the unit 

disk 0 .  

First of all let us consider the two-dimensional Laplace equation: 

,0
11

2

2

22

2


















u

rr

u

rr

u
            ,1r   (2.1) 

where r  and   are polar coordinates on this disk; 

),( ru
 
is unknown function. 

Further equation (2.1) ought to be provided by boundary condition: 
            ).(),1(  Wu    (2.2) 

A peculiarity of our point of view on IDP (2.1)-(2.2) is in consideration of 
fractality of its boundary condition. 

As a model of fractal boundary condition we take the well-known Weier-
strass function (WF):    

,)cos()(
1






n

nn baW   (2.3) 

where a  and b are its parameters. 

To provide 2π-periodicity of this function over polar angle   one is 

obliged to choose function parameter  ,4,3,2b .  

If these parameters obey to inequalities 10  a  and  1ba
 
then WF 

(2.3) is a continuous but nowhere differentiable function (see [1] and references 
there in). Moreover in this case WF possesses by the following fractal dimension: 

.
ln

ln
2

b

a
DF   (2.4) 

Formula (2.4) demonstrates that one can vary fractal dimension of WF un-
der fixed b  continuously from 1FD  to 2FD  by means of changing of its pa-

rameter a
 
from ba /1

 
to 1a . That is why we choose WF as the model of 

fractal boundary condition for IDP (2.1)-(2.2). 
General solution of the Laplace equation (2.1) without singulatity in the 

center of the unit disk is equal to [2]: 

)).sin()cos((),(
0

 




mBmArru mm
m

m   (2.5) 

Substituting 1r  into series (2.5) and comparing the result with WF (2.3) 

it is easy to find that exact solution of IDP (2.1)-(2.3) is equal to: 

.)cos(),(
1






n

nbn braru
n

   (2.6) 

In particular in the center of the disk 0),0( u . 
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Moreover one can check that function (2.6) obeys to the next functional 

equation: 

),,()cos(),(   bruabraru bb   (2.7) 

expressing its self-similarity.  

Substituting 1r  into functional equation (2.7) and using formula (2.2) 

one can easily obtain the de Rham functional equation  for WF [1]: 

).()cos()(   bWabaW  (2.8) 

Further let us calculate on the solution (2.6) the well-known Dirichlet inte-

gral:  

,)(][
0

2



 rdrduuI  (2.9) 

where   is the operator of two-dimensional gradient. 

It is easy to see from functional series (2.6) that vector ),1( u  consists 

from nowhere differentiable functions therefore it is convenient to calculate func-
tional (2.9) as the following limit: 

 










2

0
01

.),(),(lim][ drr
r

u
ruuI

r
 (2.10) 

Under ,4,3,2b

 

functions 


1)}{cos( n
nb   are orthogonal on the 

interval ]2,0[  : 

,)cos()cos(
2

0

nm
mn dbb 



  (2.11) 

hence using this relation one can obtain from (2.10) that the Dirichlet integral is 

equal to: 

.)(][
1

2






n

nbauI   (2.12) 

It is obvious that numerical series (2.12) converges if 12 ba  and diverges 

otherwise. We underline that under growing value of parameter b  length of seg-

ment of convergence for a : )1,1( bba  tends to zero. One can rewrite condi-

tion of convergence for sum (2.12) via fractal dimension (2.4) of WF: 
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 (2.13) 

Formula (2.13) means that if boundary condition (2.2) of IDP in some 

sense is “weakly” nondifferentiable then series (2.12) is convergent and if WF 

(2.3) is “strongly” nondifferentiable then series (2.12) is divergent. 

Let us now consider norm of function (2.6) in Hilbert space )( 0
2 L : 

.),(||||
0

2



  rdrdruu  (2.14) 
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Using formula (2.11) it is not difficult to find that value (2.14) is equal to: 

.
12

||||
1
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 
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n
n

n

b

a
u


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Under 2b  numerical series contained in the right-hand side of the for-

mula (2.15) can be majorized by sum 






1

12 )(
n

nba  of convergent geometrical pro-

gression. Thus norm (2.14) can be estimated as follows: 
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 (2.16) 

Upper bound (2.16) is valid under all admissible values of parameter a . 
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Fig. 2.1. The Potapov scheme of division of fractals on mathematical and phys-
ical  

 

In practice to deal with solution (2.6) of IDP (2.1)-(2.2) with boundary 

condition (2.3) possessing by fractal dimension (2.4) it is convenient to transfer  

from mathematical fractals to physical ones [1]. The procedure of this transfer is 

presented on Fig. 2.1. Of course this approach destroys relations (2.7) and (2.8) 
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but it brings new advantages namely let one take only a limited number N
 
of 

terms of the series (2.3) then the resulting function:  


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
N

n
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N baW

1

)cos()(   (2.17) 

will be differentiable as many times as required.  

Using inequality 1|cos|   which is valid for all real   it is not difficult to 

establish that for any fixed 0  inequality  

  |)()(| NWW  (2.18) 

is true under 
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Fig. 2.2. Graph of the boundary condition  

 

In this case we shall call function (2.17) as the truncated Weierstrass func-

tion (TWF). In other words if one takes number N  for TWF obeying to condition 

(2.19) then such TWF approximates WF in accordance with inequality (2.18). 

Graph of the TWF under 75.0a  and 2b  with  01.0
 
is presented 

on Fig. 2.2. In this case 58.1FD  and 21N . 
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At last let us apply procedure of truncation for series (2.6) with the same 

number of terms N
 
as in condition (2.19): 

.)cos(),(
1




N

n

nbn
N braru

n

   (2.20) 

Because of 1r

 

it is easy to estimate that: 

.
1

|),(),(|
1

1








Nb
N

N r
a

a
ruru   (2.21) 

 

 
Fig. 2.3. Graph of exact solution   

 

 

Inequality (2.21) means that in this case function (2.20) approximates func-

tion (2.6) even better then TWF approximates WF. From this inequality one can 

see that in fact fractality of exact solution (2.6) really exists only in narrow ring in 

the vicinity of the unit circle 1||:0  z  which is the boundary of the domain 

0 . Moreover it is clear that under 1r  it is enough only the first term of the 

series (2.6) to describe behaviour of exact solution of IDP under consideration 

quite precisely. 

Graph of function (2.20) with parameters corresponding to the TWF pre-

sented on Fig. 2.2 is shown on Fig. 2.3. 
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2.2 The internal Dirichlet problem on the nearly 
circular domain bounded by fractal curve  

 

In this section we consider IDP on the nearly circular domain:  

,0
2

2

2

2











y

u

x

u
      , iyxz        ),(0 zuu

z


 

 (2.22) 

where   is star-shaped domain on complex plane С  containing the origin of 

coordinates;  

   is boundary of domain  ; 

  is a small parameter ( 10  ) characterizing proximity of domain   to the 

unit disk 0 ; 

),( zu
 
is unknown function; 

)(0 zu
 
is boundary condition. 

Let one choose polar equation of   in the next form:  

),(1)(  r       ],2,0[    (2.23) 

where )(  is 2π-periodic function over polar angle   and let one suppose that 

])2,0([2  С  hence closed curve (2.23) differs slightly from the unit circle 0  

both its location and its curvature.   

Further the Riemann theorem [3] claims that in this case there is a holo-

morphic function ),( zfw   realizing conformal mapping of domain   on the 

unit disk 0 .  

Moreover exact solution of IDP (2.22) can be written via this function 

),( zf  as follows [4]:  
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Generally speaking one may derive this mapping ),( zf  explicitly in the 

framework of formalism of the harmonic moments of exterior domain \C  [5] 

but this way is too hard. On the other hand due to representation (2.23) of   we 

can restrict ourselves by construction of approximate conformal mapping of the 

nearly circular domain on unit disk. 

In this case for function ),( zfw   realizing conformal mapping of do-

main   on the unit disk 0  and obeying to conditions 0),0( f  and 

0),0(  zf  the following asymptotic formula is known to be valid [3, 6]: 

),()(),( 2
1  Ozfzzfw                                               (2.25) 

where 
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A feature of our approach is taking into account a fractality of domain’s 

boundary  . On the other hand in accordance with methods developed in [3, 6] 

for derivation of the desired mapping the boundary   must be quite smooth.  In 

order to overcome this obstacle we apply concept of physical fractals (see Fig. 

2.1) namely we use as function )(

 

TWF (2.17). Of course this TWF must 

contain enough terms in correspondence with inequality (2.19) to approximate the 

input WF with fixed accuracy (2.18). Graph of typical shape of such boundary is 

shown on Fig. 2.4, dotted line corresponding to the unit circle 0 . 

 

 
Fig. 2.4. Graph of the domain with fractal boundary  

 

Calculating integral (2.26) with function )(NW

 

we obtain the next 

lacunary polynomial of complex variable z : 

.)(
1

1
1 




N

n

bn n

zazf                                                                        (2.27) 

Substituting expression (2.25) with function (2.27) into formula (2.24) and 

expanding its integrand on   one can find approximate solution of IDP (2.22)-

(2.23) in the following form: 
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),()()(),( 2)1()0(  Ozuzuzu      .z                            (2.28)                                 

In formula (2.28) 
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and 
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Zero-order term in asymptotic expansion (2.28) looks like the well-known 

Poisson integral for the unit disk 0  [3, 4], but we stress that integration in ex-

pression (2.29) is performed along the curve   with polar equation (2.23) hence 

to calculate integral in formula (2.29) one ought to substitute into this formula 

)exp())(1()(   i .  

Integrals (2.31), (2.32) and (2.33) representing contribution of boundary  

roughness into the first order term (2.30) in asymptotic expansion (2.28) must be 

estimated in the same manner.  

This calculation seems to be very awkward but in practice contour integrals 

in formulae (2.31), (2.32) and (2.33) can be found as sums over residues of its in-

tegrands in domain  . 

To demonstrate this technique let us derive the influence of fractal 

roughness of boundary of round cylindrical hole in conductor on distribution in it 

of electrostatic potential and electric field strength. And let us remind that 

approximate conformal mapping (2.25) of domain with fractal boundary is 

determined by function (2.27) corresponding to TWF (2.17). 

According to general principles of electrostatics let us set:  

,1)(0 zu   .z                                                                           (2.34)       

It is easy to check that in this case calculation in correspondence with  for-

mula (2.29) gives us that:        

,1)()0( zu    .z                                                                       (2.35)       

Further let one consider the following function: 
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Lacunary polynomial (2.36) is a holomorphic function of complex variable 

z  on   therefore the result of application of the theory of residues to integral in 

expression (2.31) is equal to: 

.
)(

)(Re2)( 1
1

)1(
1 










z

zf
zfzu                                                       (2.37)                                                                                                                     

Function zzf )(1  also has no singularities in domain   hence using the 

Cauchy formula for derivative one can obtain from formula (2.32) that: 
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At last in accordance with the Cauchy theorem after homotopy of curve   

into the unit circle 0  in integral (2.33) it is not difficult to see that 

.0)()1(
3 zu                                                                                      (2.39)                                                                                       

Thus combining formulae (2.37), (2.38) and (2.39) in correspondence with  

expression (2.30) we obtain the following unexpected result: 

   ,0)()1( zu    .z                                                                      (2.40)       

Formula (2.40) means that electrostatic potential of this domain varies only 

in the second order on  :       

),(1),( 2 Ozu      .z                                                       (2.41)                                 

It is immediately succeed from expression (2.41) that in any point z  

electric field strength is equal to: 

).(),(),( 2 OzuzE 


                                                          (2.42)                                 

Formula (2.42) gives us useful consequence for technique of electric 

measurements namely under electrostatic screening using round cylindrical hole in 

conductor one may not take care about precision of boundary processing. 

After some generalization on three spatial dimensions the ideology of 

calculations developed in this section may be useful for description of electrically 

charged fractal core-shell nanoparticles and elastic tensions around such structures 

[7]. 
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Abstract. A cryptographic protocol should provide two basic requirements for secure 
communication. These requirements are known as diffusion and confusion. Substitution 
box structures are needed in order to provide the confusion requirement in block 
encryption algorithms. These cryptographic blocks must have a nonlinear structure to 
meet the confusion requirement. Various designs based on chaotic systems have been 
proposed to ensure the nonlinearity requirement. In this study, a new substitution box 
structure based on Nose–Hoover Chaotic System is proposed. Successful analysis results 
showed that the proposed new chaos based substitution box structure could be an 
alternative to the other three degree chaos based substitution box structures.  
 
Keywords: chaos, cryptography, substitution box, image encryption. 
 
1  Introduction 

 
Our security requirements have changed as everything in our world has 
changed. The concept of knowledge has become increasingly important in this 
change [1]. As the concept of knowledge gained importance, the security 
problem of this information emerged. Researchers have developed many 
different encryption algorithms to solve this problem. These encryption 
algorithms must meet various requirements. These requirements are known as 
diffusion and confusion. Substitution box structures are needed in order to 
provide the confusion requirement in block encryption algorithms [2]. These 
cryptographic blocks must have a nonlinear structure to meet the confusion 
requirement. 

Many encryption algorithms use substitution box structures to provide 
the confusion requirement [3-15]. Although there are many methods for 
substitution box structures, a design approach that has attracted attention in 
recent years has been the design approach using chaotic systems. In this study, a 
substitution box structures approach based on chaotic systems is proposed. The 
application of this proposed cryptographic structure is shown on an image 
encryption algorithm. 

The rest of the study is organized as follows. In the Section 2, a brief 
literature summary about chaos based s-box design is given. In the Section 3, 
the Nose-Hoover chaotic system is introduced. In the Section 4, the proposed 
new s-box structure is explained and analysis results are given The last section 
summarizes the study. 
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2  Related Works 
 
Chaos-based s-box studies have been a remarkable research topic in the last two 
decades. One of the most important reasons behind this increase in interest in 
research topic is the developments in cryptanalysis studies. In particular, 
application attacks allow the attacker to make various inferences about 
cryptographic protocols using a variety of side channel information. Although 
designs based on mathematical transformation do not contain weaknesses in 
terms of performance criteria, their well-defined features allow this side channel 
information to be easily obtained. Therefore, new searches for alternative s-box 
structures based on mathematical transformation have accelerated. An important 
design technique in this aim is chaos based s-box designs. 

Chaos based s-box design was first encountered in 2001 [16]. In this 
study, a s-box design has been realized by using discrete time logistic map and 
this structure has been used in a block encryption algorithm architecture. 
Between 2001 and 2010 [17, 18], it has been aimed to improve the performance 
of s-box structures by using different chaotic maps. However, the performance 
characteristics of the AES s-box structure could not be approached in these 
studies. Therefore, performance parameters have been improved with various 
optimization algorithms [19]. However, the additional transaction costs in these 
studies have emerged as another problem to be solved . 

In 2010, the idea of using continuous time chaotic systems in the 
design process as an alternative to discrete time chaotic systems has been 
proposed [20]. The aim of these design studies is to increase the complexity of 
the chaotic system and improve the nonlinearity properties of s-box designs. 
Following these studies, several studies aimed at improving performance by 
using more complex chaotic systems have been proposed. Among these studies, 
design studies based on hyper chaotic systems [21], time delayed chaotic 
systems [22] and fractional order chaotic systems [23] draw attention.In chaos 
based s-box designs, the effect of using only different chaotic systems on 
performance has not been investigated. In addition to selecting chaotic systems 
as an entropy source, it is aimed to increase the quality of the entropy source by 
using various additional procedures [23-30].  

In this study, an algorithm based on continuous time chaotic systems 
has been proposed. The most important aspect of the study is that the system 
selected as chaotic system does not need any control parameters. This feature of 
the selected system will have several advantages in the design process of the 
cryptographic protocol, especially in the process of sharing the secret key of the 
algorithm (key distribution). 
 
3  Nose–Hoover Chaotic System 
 
Chaos theory is an exciting science. Because it points out that the randomness 
behind the events have actually mathematical equations. Chaotic behavior first 
emerged by showing that reason of randomness in weather forecasts modeled by 
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various differential equations is the internal structure of the system. In the 
literature, the simplest differential equation models in which chaotic behavior is 
observed are known as systems like Lorenz, Chua, Chen. The common features 
of these systems are expressed in third order differential equations. 

Nose–Hoover system [31] is a third-order system like the systems 
mentioned above. The definition using ordinary differential equations is given in 
Eq. (1). The system in which Eq. (1) is expressed has three initial conditions. 
 
dx/dt = y 
dy/dt = y * z – x                   (1)  
dz/dt = 1 – y*y 
     
The phase space graphs showing the variation of the state variables of the Nose 
– Hoover system are shown in Figure 1.  
 

 
Fig. 1. Phase-space analysis of Nose–Hoover system 

 
 
4  Proposed S-Box Design Algorithm 
 
The innovative aspect of the study is the chosen chaotic system class. This is the 
first study in the literature using Nose–Hoover chaotic system in substitution 
box design. For substitution box design, the recommended method in Ref. [14] 
is used. The details of the used method can be examined in detail. A program 
can be produced different substitution box design by running the program 
repeatedly at different times. The program has a user-friendly design. There is 
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also an introductory video on how to use the program. There is also an interface 
for the performance tests of the substitution box structures produced in the 
program. There are five widely accepted criterion in the literature. These tests 
are: 

 Bijective criterion, 
 Nonlinearity criterion,  
 Bit independence criterion (BIC),  
 Strict avalanche criterion 
 Input/output XOR distribution criteria 

 
A sample substitution box structure and performance criteria produced using the 
proposed chaotic system are given in Table 1. Since the method used for 
substitution box design automatically provides bijective, this criterion is not 
included in Table 1. 
 

Table 1. Proposed substitution box structure 
s-box 

 0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 19 100 82 169 62 29 131 137 16 49 240 105 155 43 152 73 

1 36 171 57 18 237 81 247 136 98 9 195 97 228 17 235 165 

2 224 218 193 232 177 229 147 227 35 71 46 54 216 58 238 53 

3 23 175 139 75 151 33 129 163 252 248 96 61 225 254 68 40 

4 21 250 176 78 253 4 200 183 162 66 145 188 243 28 166 64 

5 255 22 133 161 39 55 197 191 143 173 104 63 206 83 233 50 

6 220 106 154 205 146 181 24 67 25 90 48 111 239 77 101 226 

7 74 164 102 204 44 14 87 217 236 91 168 158 120 65 122 119 

8 142 10 76 244 189 37 222 207 56 246 174 84 214 60 230 42 

9 79 182 221 126 1 2 198 38 245 180 251 116 88 89 134 5 

A 231 112 190 69 201 0 72 215 31 167 234 113 209 199 109 186 

B 196 95 178 86 52 20 132 128 41 7 13 156 202 3 123 212 

C 12 213 160 223 51 93 70 203 242 110 15 125 118 30 80 184 

D 187 47 115 208 45 121 210 6 194 108 144 117 138 85 211 148 

E 141 192 107 103 124 172 11 241 219 130 159 185 26 170 149 27 

F 127 34 99 153 135 140 179 114 59 157 94 92 8 249 32 150 

 
The cryptographic features of the proposed substitution-box structure are given 
in Table 2. 
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Table 2. Cryptographic properties of proposed substitution box structure 
s-box structure 

Nonlinearity 

Average 

Strict 

Avalanche 

Criterion 

Average 

Bit Independence Creation 

Input / Output 

XOR 

Distribution 

BIC-SAC 
BIC-

Nonlinearity 
Max 

104.25 0.5044 0.502 103.93 10 

 
5 Conclusions 
 
In this study, a substitution box design has been performed which could be an 
alternative to chaos based substitution box structures in the literature. The 
innovative aspect of the proposed method is the chaotic system used in the 
design process. The most important feature that distinguishes this Nose–Hoover 
system from others is that it does not need any control parameters. The results of 
the analysis showed that a successful substitution box structure can be obtained. 
 
Acknowledgments 
  
This study is supported by the Firat University Scientific Research Project 
(TEKF.19.18). 
 
References 

 
1. C. Wu and D. Feng, Boolean Functions and Their Applications in 

Cryptography. Berlin, Germany: Springer, 2016. 
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8. F. Özkaynak, ‘‘From biometric data to cryptographic primitives: A new 
method for generation of substitution boxes,’’ in Proc. ACM Int. Conf. 

Biomed. Eng. Bioinformat., Bangkok, Thailand, Sep. 2017, pp. 27–33. doi: 
10.1145/3143344.3143355. 

9. L. Liu, Y. Zhang, and X. Wang, “A novel method for constructing the S- box 
based on spatiotemporal chaotic dynamics”, Appl. Sci., vol. 8, no. 12, p. 2650, 

2018. doi: 10.3390/app8122650. 
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Abstract. Creating the spin current due to temperature gradient has attended so attention. 
Researchers are interested in spintronic field since data can be processed and transferred 
safely. Spin-caloritronic phenomena as, an emerging field, combine the electron’s spin 

and heat in materials.There are severe restrictions through using inorganic materials such 
as high cost and the lack of materials. Because of those limitations, we choose biological 
material (especially DNA) with super features such as flexibility, low cost, and 
adjustable conductance to investigate the spin transfer in an appropriate temperature 
gradient. The extended PBH model, with spin degree of freedom is chosen for this study. 
The Nose-Hoover thermostat is used for applying the temperature gradient. We used 
chaos approach to analyze the system. At first, with simultaneously varying of the biased 
voltage and magnetic field, we found at E=0.6(mv) and B=0.05, 0.25, 0.4(T), there are 
maximum spin current. Secondly, we have simultaneously varied the biased voltage and 
magnetic field and we found the maximum spin current at E=0.6(mv) and T=305, 310, 
335 (K). We studied the system using multi-fractal analysis, and Re′nyi dimension. So 
off and on states were rcognized. This gives a helpful device to recognize the reactions of 
organic polymer to external factors acting on the system. 
 
Keywords: Spin Switch, Chaos, DNA, Temperature Gradient 
 
1  Introduction 
 
Among the technologies involved in heat transfer, thermoelectric transformation 
technology (Tes)  is an applied technology, that has several advantages, 
including small size, high reliability, long life [1]. On the other hand, 
thermoelectric devices can directly convert thermal energy into electrical 
energy. Semi-conductors, ceramics, and polymers are the most utilized materials 
in the manufacturing of Tes [2]. Therefore, the transport characteristics of 
molecular systems can be investigated with thermoelectric devices [3]. The 
combination of spintronics and thermoelectricity is known as spin-caloritronic 
phenomena [4, 5]. This phenomenon is utilized to investigate the cooperation of 
charge, spin, and heat transport. In addition, the use of DNA spin polarization to 
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transmit information is one of the most interesting issues in information 
theory[6]. 
 
Inorganic materials are widely used in the manufacture of spintronics devices. 
There are serious restrictions through using inorganic materials such as high 
cost and the lack of materials. Because of those limitations, we choose 
biological material (especially DNA) with super features such as flexibility, low 
cost, and adjustable conductance to investigate the spin transfer in an 
appearance temperature gradient. The spin polarization property of materials is 
one of the most important factors in choosing a material in spintronic 
phenomena. In this regard, a DNA molecule is used as biological material to 
investigate the DNA nano-switches. By regulating the gate voltage, switching 
the spin current between on and off states is possible. Spin switch effect was 
investigated on many inorganic materials such as graphene/MoS2 [6], MnSi [7] 
and so on. DNA is a chemical chain consisting of 4 organic bases, and it is 
stored in the cells of a wide variety of organisms. 
 
DNA is a long polymer consist of nucleotides, and any nucleotide is combined 
of three basic organic (cytosine, guanine, adenine, thymine), sugar, and 
phosphate groups [9]. Several theoretical models have illustrated the nonlinear 
dynamics of DNA, such as Peyrard-Bishop (PB), Peyrard-Bishop-Dauxois 
(PBD), and PBH (Peyrard-Bishop-Holstein) models [10]. We choose the 
generalized PBH model with spin degree of freedom because of their 
advantages such as spin and charge transfer capability. There are several ways 
to study the effects of the environment on the system, such as the Langevin 
thermostat,  Nos′e-Hoover thermostat, etc. So to investigate the effect of heat on 
spin transfer, the Nos′e-Hoover thermostat was used as the heat source, Fig.1. 
Our purpose is creating a spin switch in the DNA chain. In order to find the 
conditions in which the system acts as a switch, we consider the multi-fractal 
spectrum. So we studied the Re′nyi dimension and analogous specific heat. 
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Fig.1. A schematic illustration of the model used to investigate the temperature driven 

spin transport. 
  
2 Model and Method 
 
We have chosen the N=40 base pairs DNA system (Table1). The Hamiltonian is 
written as follows [8]: 
 

fieldSocarDNASYS HHHHH  int
 (1) 

 
Where, 
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Dn and an are depth and the width of the Morse potential.  As well as, k 
is the coupling constant, ρ is the stiffness parameter, and α is the 
damping coefficient. Also, 
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Here, cn

ϭ+, and cn
ϭ create or destroy an excitation at the tight-binding site n with 

ϭ=↑↓ and χ is the electron−lattice coupling constant. 
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Table 1. The DNA sequences [8] 
Name Number of base 

pairs 
sequences 

HC1 40 TAAATAAATAAATAAATAAAT 
AAAATAAATAAAAGCCTTT 

CH22 60 AGGGCATCGCTAACGAGGTC 
GCCGTCCACAGCATCGCTAT 
CGAGGACACCACACCGTCCA 
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Where,             1coscos1sinsinsin1, nininnitD sonn

, tso 

is spin-orbit interaction constant and θ is the helix angle and φ =nΔφ is the 
cylindrical coordinate with ϕ the twist angle. The preservation of time reversal 
symmetry leads to 

  nnnn DD ,11,
. The formulation of Nos′e-Hoover thermostat is 

as follows [8]. The parameters that are used in the PBH model are shown in 
Table 2. 
 

0

21
TNym

M n




 
 

(6) 

Here, ξ is the thermodynamics friction coefficient which interacts with the 
particles. T is the temperature preserved by heat source and M=1000 is the 
constant of Nos′e –Hoover. In the current study, we investigate the effect of 
external electrical and magnetic fields on spin transfer in DNA. So, 

EBfield HHH  [8]: 
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Due to the non-linear equations of the system, the chaos approach can be used to 
analyze the system. To obtain this approach, the evolution equation of 
Hamiltonian is extracted and it is necessary to convert the second-order 
differential equations to first-order equations, and then to extract the 
corresponding spin-up electric currents to study the information transfer by the 
spin current. In this regard, tools such as Reni dimension, etc. are used to 
analyze the behavior of the spin current of the system. So the Heisenberg 
approach is used to obtain the currents. 

 
 

84



 
Table 2.PBH parameters[8] 

Value 
Unit Symbol 

300 amu m 

0.04 2A
eV
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(9) 

 
Here, I↑ and I↓ are spin-up and spin-down currents, respectively. Now, the net 
spin (Is) and net charge (Ic) currents are introduced as following:  
 

  IIIS
 

  IIIC
 

(10) 

 
3  Result and Discussion 
 
We have tried to obtain the different electrical responses of the system. Several 
strategies have been offered to describe strange attractors from a sincerely 
geometrical point of view. Based on concepts developed in the theory of fractal 
sets, we have simultaneously varied the biased voltage and magnetic field and 
studied the response of the system. Various islands have emerged that represent 
on and off states that are examined and confirmed by multifactorial analysis. 
The result gives a helpful tool to recognizing the reactions of organic polymer to 
external factors acting on the system. We have considered the Re′nyi dimension 
(Dq) [10] to analyze the system: 
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Where Pi is the probability that the trajectory on the strange attractor visits box 
i, and M(l) is the number of nonempty boxes. The multi-fractal analysis of spin 
current time series can show the multi-fractal behavior. To achieve a 
thermodynamic understanding of multi-fractality. We considered 

 Dqq q 1 wherein τ is analogous free energy. So, Cq  is defined as 

follows:  
 

     1212

2




  qqqC
T

C
q

q    
(12) 

 
 
 As shown in Fig.2, there are some islands at parameters surface with some 
different currents. The maximum spin current can be seen at E=0.6 (mV) and 
B=0.05, 0.25, 0.4 (T). In this way, on and off states are determined.  
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Fig.2. Alteration of spin current due to the concurrent effects of the magnetic field and 

bias voltage. 
 
 
Secondly, by simultaneously varying the electrical field and temperature 
gradient, different behavior of spin current is shown. At E=0.5 (mV), T=305, 
310, 335 (K) maximum spin currents are shown, so we can say that on and off 
states are determined.  
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Fig.3. Alteration of spin current due to the concurrent effects of temperature and bias 

voltage. 
 
The multi-fractal analysis of spin current time series at different magnetic fields 
shows the multi-fractal behavior. As shown in Fig.4, there is maximum and 
minimum spin current for B=0.25, 0.05, 0.4 (T) and B=0.15, 0.45 (T), 
respectively. It means that the region with maximum spin current (ON state) is 
distinguished from the zero spin current regions (OFF state). Similarly, we 
studied the Re′nyi dimension spectrum of system for which, temperature 
gradient is varied. As shown in Fig.5, there is maximum and minimum spin 
current at T=310, 305, 320 (K) and T=325, 330 (K), respectively. It is clear that 
the region with the maximum spin current represents the on state, and the region 
with the minimum spin current represents the off state. So, the spin switch can 
be designed. 
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Fig.4. The Re′nyi dimension spectrum at different quantities of the magnetic 

field  at E=0.6 (mV) and T=335(K) 
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Fig.5. The Re′nyi dimension spectrum at different quantities of the temperature 

gradient at E=0.5 (mV) and B=0.05(T) 
 
 
Furthermore, the analogous specific heat Cq is investigated. In this paper, we 
studied Cq of the magnetic field and temperature. As shown in Figs 6 and 7, 
there is one single peak for B=0.25 (T) and T=310 (K) wherein, the maximum 
spin current is observed. The obtained results indicate that higher dimension 
spectra are relative to the maximum positive currents. This prepares a beneficial 
gadget to identify the notable responses of the biological polymer. 
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Fig.6. Analogous of specific heat for various values of the magnetic field at 

 E=0.6 (mV) and T=335(K) 
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Fig.7. Analogous of specific heat for various values of the temperature gradient at 

E=0.5 (mV) and B=0.05(T) 
 
Conclusions 
 
We have theoretically studied the various factors to design a spin switch based 
on the HC1 sequence. Then, we have changed the magnetic field bias voltage 
and also the temperature and bias voltage at the same time. The on/off behaviors 
have been shown. We have used the multifractal analysis to understand the 
switch behavior better. Besides, the on/off behavior of the system can be 
distinguished via the Re′nyi dimension spectrum. Moreover, The analogous of 
specific heat can endorsement the results. 
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Abstract. This paper analyzes the possibility to obtain selective transport of mi-
croparticles depending their size. The particles are suspended in a fluid confined in
modulated channels and a periodic pumping moves back and forth the fluid without
net displacement. Using numerical simulation and bifurcation analysis tools, we show
the existence of particle drift under the Stokes assumption of the fluid flow. For spe-
cific parameter ranges, the particle transport can be selective. The transport solution
and the selectivity are related to (de)synchornization transitions in forced non-linear
oscillators. We reveal that chaotic transitions are a key factor to drop from a bounded
dynamics to a net transport. This transport phenomenon can be relevant for heavy
particles in suspended in the air in microgravity environnement.
Keywords: Particle transport, synchronization, Chaotic dynamics, bifurcation anal-
ysis, microfluidic.

1 Introduction

Sorting suspended particles in a fluid is an issue in many domains such as
the food industry, medical analyses or wastewater treatment. Many processes
are based on the microfiltration using a membrane. However, at high per-
meation rates, this method suffers from the accumulation of non-permeating
particles above the membrane surface, thereby blocking the pores [1]. In re-
cent decades, alternative techniques using flow in a periodic and asymmetric
structure of micro-channels have been developed. In these systems, the parti-
cles are driven mainly by the viscous force. Micro-particles may drift from the
streamline mainly due to the lift force. In a confined geometry, the lift effect
is strongly dependent on the particle size and induces a selective trajectory.
Based on this principle, passive micro-fluidic devices to sort the particles have
been developed such as branching channels, pinched flow fractionation, spiral
channels or media with a periodic pattern of micro-posts [2–6]. The particle
sorting is done using a continuous flow.
Such a method does not apply to the removal of specific particles from a basin.
Particle selection using an oscillating flow, i.e. without net displacement of
the fluid, is possible as shown in [7]. The particle transport occurs through
a periodic structure of triangular columns. For a range of particle sizes, the
lift force acts asymmetrically during the back and forth cycle of the fluid flow.
This results in a drift that is orthogonal to the oscillating flow for a parameter
range. Therefore in all systems the lift force is the key phenomenon of particle
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drift and sorting.

In contrast, the present paper focuses on longitudinal transport, i.e. the
drift takes place along the axis of fluid oscillations. Indeed few studies are
devoted to the onset of transport and to the kind of transition. These questions
are useful for the design optimization of these devices.
We consider a micro-device similar to [8] where two basins are connected via
modulated channels filled with a liquid. A periodic pumping confers a back
and forth fluid motion dragging the particles in suspension. For oscillating
Stokes flow, the 1D transport of particles is usually explained by the Stokes
drift [9]. The particle follows the flow drift due to the traveling wave. In our
context, the fluid is, however, driven by a standing wave which does not lead
to fluid drift. The flow therefore needs to be ratchet like. In the early 2000s,
the transport of overdamped particles in ratchets in many fields in physics was
interpreted as a Brownian motor in which transport results from the action of
noise in an asymmetric potential [10,11]. Such a drift ratchet phenomenon may
occur in the microfluidic context considered here [12] and the experiment in [8]
corroborated this theory. Nevertheless, further experiments revealed that the
thermal fluctuations are negligible and the experiment in [8] does not evidence
transport due to a Brownian ratchet.
Recently, we highlighted different 1D transport mechanisms in a Stokes flow,
called ratchet flow, for a simple model of inertial particle [15]. We showed that
the spatial variations of the fluid flow induce a ’ratchet effect’. For instance,
for moderate damping chaotic dynamics are a key component of the transport.
However, the parameter domains of the transport require that the particle
radius is not negligible compared to the channel radius [13]. Therefore, the
drag coefficient depends on the channel walls and hence on the particle position.
Such a variation may induce a friction ratchet [14,10].

The goal of this paper was to determine whether such 1D transport mech-
anisms as in [15] exist for a particle radius comparable to the channel radius,
and then to determine a possible dependence of the transport direction on the
particle size. To answer these questions, we computed the friction for the 3D
axisymmetric problem and we used bifurcation analysis tools and continuation
of periodic orbit to provide a comprehensive overview of the dynamics in the
phase space.

Fig. 1. Sketch of the problem: the particle translates along the x-axis of a periodic
modulated channel. It is dragged by the periodic motion of a viscous fluid.
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Fig. 2. Profile of (left panel) ûeq(x) and (right panel) γ̂(x) functions for two particle
radii: (black line) rp = 0.05 and (red dashed line) rp = 0.1.
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2 Modeling

Let us consider a L-periodically modulated channel infinitely extended along
the line (Ox) through which a Newtonian fluid with the viscosity µ is T -
periodically pumped. We call ’cell’ the channel portion of length L (Fig. 1).
The cell is axisymmetric and its radius r(x) varies sinusoidally:

R(x) = Rm (1 + cr cos (2πx)) (1)

where Rm is the mean radius and cr is the channel camber. In this study, we fix
the channel geometry such as Rm = 0.14 ·L and cr = 0.56 which corresponds to
the shape shown in Fig. 1. We assume that the flow is a quasi-static Stokes flow.
Then, a periodic pumping implies a periodic fluid velocity field in space and
time. Moreover, the time dependence of the velocity field is governed by the
periodic pumping v0(r, t) = u0(r)A(t), where A(t) is the pumping amplitude
and u0(r) is L-periodic. We note [p] the amplitude of the pressure difference
between the cell inlet and outlet. Pressure, length and time are scaled by
[p], L and T respectively. We consider spherical particle of mass m with the
adimensional radius rp. If, in addition, we assume that the particle moves only
along the axis and the particle does not rotate then the particle position x(t)
is governed by the dimensionless ODE:

ẍ+ Pγ γ̂(x)ẋ = PγPvγ̂(x)ûeq(x)A(t). eq : ode (2)

In the latter equation, we have introduced two bifurcation dimensionless pa-
rameters:

Pv =
[p]T

µ
(3a)

Pγ =
LTµ

m
. (3b)

The field γ̂(x) > 0 is the normalized drag coefficient of the particle. It depends
on the channel boundary and on the particle size [17,13]. The field ûeq(x) is
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related to the flow field velocity without particle and also to the particle radius
rp. Fig. 2 displays the fields ûeq(x) and γ̂(x) for a sinusoidal cell profile such as
cr = 0.56 rmin = 0.14. The computation of these coefficients is detailed in [16].
The particle size does not notably affect the veolcity field ûeq (Fig. 2a) whereas
the friction is very sensitive to the particle radius (Fig. 2b). The friction is
maximal in the narrow region of the cell and minimal in the larger region.
For rm = 0.1, the ratio between the maximum and minimum value is large in
contrast to rm = 0.05, for which γ̂(x) is almost constant. In the latter case,
Eq. 2 is similar to the ratchet flow model studied in [15,23,24] and we expect
similar transport dynamics. If rp = 0.1, the large friction contrast may induce,
in addition, a friction ratchet [10].

Note that the functions ueq(x) and γ(x) are 1-periodic and have the parity-
symmetry like the geometry of the problem. If, in addition, the pumping
A(t) varies sinusoidally, then the problem is invariant by the parity symmetry
x→ −x. More precisely, if x(t) is a trajectory given by Eq. 2 then −x(t+ 1/2)
is also the solution for a symmetric initial condition. In order to break of the
parity-symmetry, the back and forth phases of the pumping should be different,
i.e. this means that A(t + 1/2) 6= −A(t). Let us introduce the parameter α
such as 0 ≤ α < 1 and define the function A(t):

A(t) =

∣∣∣∣∣ 1− α , if 0 ≤ (t modulo 1) < α

cos
(

2π t−α1−α

)
− α , if α ≤ (t modulo 1) < 1

(4)

If α = 0 is zero, A(t) = cos(2πt) and the problem is symmetric. Otherwise, the
pressure difference is constant during the first step in the interval [t0, t0 + α[
followed by a sinusoidal pumping in the interval [t0 + α, t0 + 1[. In this case
A(t + 1/2) 6= −A(t). Note that the mean value of the pumping is still zero if
α 6= 0.

In this paper, we consider two particle sizes: rp = 0.05 or rp = 0.1. The
transport dynamics are explored in the parameter space using the time integra-
tion and the path-following method of the periodic solutions. The bifurcation
parameters are Pγ ,Pv and α. Branches of T -periodic solution on bifurcation

diagrams are represented by the norm ||.|| such as: ||s|| = [ 1T
∫ T
0

(ẋ(t))2dt]1/2.

3 Drift at large drag Pγ

In this section we analyze the transport solutions when the drag Pγ is large.
According to [15], if Pv � 1 we can prove that there are two periodic solutions
of the particle motion which are centered at the extrema of the velocity field
ueq noted s0 for the maximum and sm for the minimum. In the symmetric
case (α = 0), by increasing Pv, we find out a third solution noted sa bifurcated
from either s0 or sm via a spontenaeous symmetry breaking. Fig. 3 shows the
time evolution of the three solutions s0, sm and sa. As in [15], one of the three
solutions are stable and attracts all of the dynamics if α = 0. Therefore, the
transport solutions can occur only if α 6= 0.
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Fig. 3. Time evolution of the periodic solutions s0, sm and sa for rp = 0.05, α =
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Fig. 4. Continuation of 1-periodic solutions for rp = 0.05, Pv = 1350,Pγ = 79 by
varying α. Plain [dashed] line indicates stable [unstable] orbit. Black dots indicate
pitchfork bifurcations.

3.1 Transitions to transport solutions

We follow the periodic branches of solutions s0 and sm by varying α and we
fix Pv = 1350 (fig. 4). The branches s0 and sm annihilate in a saddle-node
bifurcation for α ' 0.2807. A similar scenario arises starting from α = 1
for which the pumping is zero: a pair of saddle orbits annihilate in a saddle-
node for α ' 0.8143. In the large range [0.3; 0.8], no solution is found. The
saddle-node bifurcations correspond to the intermittent bifurcation type-I [19]
as explained in [15]. The stroboscopic time evolution of the particle position at
every period (fig. 5) displays a regular descending staircase for different values
of α. The plateaux correspond to oscillations close to the threshold. The
plateaux become longer when α approaches the onset of bifurcations. Such a
dynamics is similar to the phase slip of a desynchronisation transition [15]. A
well-known consequence is that the drift velocity vanishes as the square root

95



Fig. 5. Discrete particle positions xn = x(n), n ∈ N near the onset. Different values
of α = 0.283; 0.285; 0.3; 0.4; 0.5, other parameters as in fig. 4.

fig:drift

of the threshold distance: c ∝
√
α− αc,where αc is the threshold value [22].

According to the time integration, the drift velocity increases with α till α ' 0.5
and remains almost constant till 0.6. By further increasing α the velocity
decreases to zero when α approaches the critical value of the second saddle
node. Consequently, the optimal transport is about α = 0.5. In the next
section, we fix α at 0.5 and we seek the parameter domains of particle transport.
Note that according to the discussion in [15], the particle drift phenomenon is
part of a class of dissipative rocking ratchets for which the transport direction
is determined by the asymmetry [20,21]. In the current problem, it means that
the direction of transport depends only on the sign of the α parameter, i.e. the
kind of pumping. The particle drifts to negative values of x if α > 0, otherwise
the particle drifts to positive values.

3.2 Domain of intermittent drift

We explore the transport domain by varying the parameters Pv and Pγ . We
trace the saddle-node loci of the periodic solutions, in the (Pγ ,Pv) plane (Fig. 6)
which represents the possible onset of transport. By varying Pγ the two saddle-
nodes form a vertical band which ends at a minimal value of Pγ except if Pv is
about 1000 (see Fig. 6). The transport arises in the region outside these bands
and when the bands do not overlap (gray region in Fig. 6). Therefore, the
transport domain is roughly a sector in the (Pv,Pγ) plane. Then, the transport
occurs if Pv is large enough, in other words, if the pumping amplitude is large.
There is additional tapered vertical spaces for specific values of Pv for which
transport may occur for large Pγ values. The specific Pv values are only slightly
affected by the particle size: the tapered region occurs for Pv about 1500, 2200
and 2900 regardless of rp.
In general, the domains of intermittent drift are qualitatively similar by varying
rp. However, the existence domain differs quantitatively, which allows to find
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Fig. 6. Saddle-node loci of 1-periodic solutions in the (Pγ ,Pv) plane for rp = 0.1.
The gray region displays the domain of intermittent drift.

fig:domain

specific parameters for which the drift arises while for the other particle size
the dynamics is still periodic and so bounded. Therefore, the transport only
occurs for specific particle sizes.
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Fig. 7. [left] Discrete particle trajectory xn near the onset of the synchronized trans-
port c = −1. [right] The same discrete particle trajectory represented in the comoving
frame xn + n. Parameters are: rp = 0.1, α = 0.5,Pγ = 24.2,Pv = 2250.
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4 Transport for moderate Pγ

In this section, we consider smaller values of Pγ . Thus, the particle damping is
smaller implying a larger desynchronization between fluid movement and the
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particle trajectory. This leads to more complex dynamics especially chaotic
dynamics.

4.1 Synchronized transport

sec:sync
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Fig. 8. Continuation of synchronized transport c = −1 with Pγ = 7.46 and rp = 0.1.
Plain [dashed] lines indicate stable [unstable] solutions. Black dots indicate period-
doubling bifurcations.
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We study the behavior of the intermittent drift when Pγ is decreasing. We
observe that the drift velocity c increases and the discrete dynamics presents
shorter and shorter plateaus as in Fig. 5. According to Fig. 7, the plateaus
may disappear and the transport occurs almost with a constant velocity. The
representation of the dynamics in the co-moving frame (c = −1) points out an
intermittent and a regular behavior. Indeed, the dynamics in the co-moving
frame is due to the phase slip at a synchronization transition for weakly non-
linear oscillator. It is a similar scenario as described in Section 3 but in the
co-moving frame. The threshold is a saddle-node from which a pair of periodic
solutions emerge. In the laboratory frame: these periodic solutions correspond
to a synchronized transport solution: after a entire number n of time periods
the particle moves by an entire number of spatial periods m, then the velocity
is a rational c = m/n. This result is typical of phase locking (here is the c ve-
locity) of a forced non-linear oscillator [22]. In the example of Fig. 7, we have
c = −1, but we found also other velocities for other parameters: c = −1/2 and
c = −2.
Another difference with the intermittent drift is that the synchronized trans-
port can be not an attractor especially if Pγ is not large. For instance, for
Pγ = 7.46, we plotted the bifurcation diagram of the synchronized transport
by varying the Pv parameter (Fig. 8). The transport emerges via a saddle-
node bifurcation related to a synchronization phenomenon at about Pv = 1628.
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From this saddle, two branches display zigzags with further saddle-nodes and
period-doubling bifurcations. Due to the period doubling, the branch changes
its stability. According to Fig. 8, there exist Pv ranges for which the transport
c = −1 is a stable solution. From the period-doubling bifurcations a cascade
of period-doubling bifurcations occurs leading to a chaotic dynamics. This dy-
namics being bounded in the co-moving frame the transport velocity remains
equal to c = −1. The scenario is similar to the one described in [15] in this
context and it involves universal results of (de)synchronization of periodic os-
cillators by periodic external action [22]. As a result, in the range delimited by
period-doubling, there may exist chaotic transport solutions without locked ve-
locity. The transport velocity is then lower than in the synchronized transport
case but the transport does not vanish.

Fig. 9. Route to synchronized transport: dynamics and transitions by increasing Pv
for moderate Pγ .

fig:routetosync
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Fig. 10. Chaotic dynamics rp = 0.1,Pγ = 7.46, α = 0.5 for two different values of
Pv. (a) near the crisis of the unbounded dynamics (Pv = 1458.3). (b) near the
syncrhonization transition (Pv = 1467.5).
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4.2 chaotic transitions

The synchronization transition at the saddle-node of Fig. 8 (Pv = 1628,Pγ =
7.46) differs from the synchronization at Pγ = 24.1. The dynamics is no longer
quasi-periodic but chaotic. In [15], we found intermittency occuring at chaotic
time intervals: this behavior is typical of large forcing of an oscillator [22].
However, the particle dynamics displayed in Fig. 10b does not corroborate the
existence of intermittency. We guess that the coexistence of attractors hides
the intermittency.
Now, we detail the transitions from the periodic solutions to the synchronized
transport by increasing Pv when Pγ = 7.46. Indeed, we retrieve all the bifurca-
tions scenario explained in detail in [15]. The route to synchronized transport
is sketched in Fig. 9. The periodic solutions s0 or sm (Fig. 2), by increasing Pv,
involve a period-doubling cascade leading to a chaotic unbounded dynamics. A
merging crisis may appears and because of the spatial periodicity the strange
attractor is no longer bounded. If the problem does not have the parity sym-
metry (α 6= 0), we expect a preferential direction. In Fig. 10a, the dynamics of
the particle near the onset displays a drift to negative values in a intermittent
manner. However, the intermittency is not quasi-periodic but chaotic. By in-
creasing further Pv, the drift velocity increases and the dynamics is still chaotic
(Fig. 10b).

4.3 Chaotic drift
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Fig. 11. Stroboscopic particles positions xn at entire times for radii rp = 0.05 (black
lines) and rp = 0.1 (red lines) for eleven initial conditions (x0, v0) = (0, i/10) with
i = 0, 1, . . . , 10. Other parameters are α = 0.1,Pγ = 6.7,Pv = 2000.

fig:tchaos
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The previous transport solutions are obtained for α = 0.5 and we find only
transport to negative direction. A non-zero value of α is required for the ex-
istence of intermittent and quasi-periodic drift. However, if Pγ is not large,
unbounded dynamics and also synchronized transport may exist for α = 0.
The scenario from periodic solution to the unbounded dynamics in Fig. 9 in-
volves, this time, spontaneous symmetry breaking. The chaotic dynamics has
diffusion like behavior: no prefential direction is observed. When there is a
synchronized transport then the synchronized transport solution in the oppo-
site direction exists too. To have an effective transport, we need to slightly
breaks the parity symmetry. As explained in [23], the transport solutions still
exist but for slightly different parameter ranges when α is small. Therefore, we
expect there is parameter domains for which the transport direction depends
on the particle size.
We found for α = 0.1,Pγ = 6.7 and Pv = 2000 different drift directions de-
pending on the particle size: a net drift appears for rp = 0.1 and while, for
rp = 0.05, a slight drift to positive direction occurs (Fig. 11). The dynamics
is chaotic and notably it depends on the initial conditions. For rp = 0.05, the
mean value over the initial conditions of the velocity transport is slightly posi-
tive (c ' 0.04). In addition, there is a diffusive-like behavior too: the trajectory
deviation increases with the time. Indeed, the chaotic dynamics results from
the competition between opposite transport solutions c = ±1 which are unsta-
ble. For rp = 0.1 the diffuse behavior is weak and the mean velocity remains
close to c = −2/5. A possible explanation is that we are in the vicinity of the
onset of the synchronized transport c = −2/5. The multiplicity of solutions
makes it difficult to find this synchronized transport.

5 Concluding remarks

We have shown using time-integration and bifurcation analysis that a selective
transport of micro-particles is possible depending on the particle size.
For large drag Pγ , the possible slow drift is quasi-periodic and determined by
the pumping asymmetry, i.e. the parameter α. Then, the drift requires a non
zero value of α typically a value about 0.5. By decreasing the drag Pγ we
found out synchronized transport solutions. The velocity is then locked to a
rational value. If α is about 0.5, the transport velocity is negative. Therefore,
for α about 0.5, we found either bounded periodic solutions or transport in
the negative direction. However, if the selectivity is possible, we do not find a
change of transport direction depending on the particle size.
Such a property was found for moderate value of Pγ < 10 and α about 0.1.
Indeed, for this parameters values, the asymmetry of the problem is no longer
required. We retrieved the scenarios of the ratchet problem of a point-like
particle. In particular, the dynamics can be chaotic. We found parameters
such as the direction of the parameter drift depends on the particle size.
This theoretical study may have application of heavy particles in the air in
micro-gravity environment. Indeed, the small value of Pγ requires a low density
fluid and the gravity could break the phenomena transport. Because of the

101



chaotic dynamics could be strongly influenced by the noise [24], a further work
would be to study the influence of noise on the transport selectivity.
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Abstract. Chaos systems have been studied for decades due to their applications in
several domains such as: economy, communications, cryptography. . . etc. In recent
years, designing and proposing new and higher dimensional chaotic systems become
an increased tendency in particular for chaotic systems applied in network security
domain.
In this paper, we propose a new 4-dimension chaotic map with four (04) control pa-
rameters and five (05) non-linear terms. Then, we investigate the chaotic behaviors
of the proposed system by considering the bifurcation and the Lyapunov exponents
(LE) theories. The proposed map is applied for generating cipher keys to perform
data encryption and secure an Internet Protocol (IP) communication.
Keywords: Chaotic, Dimension, Bifurcation, Lyapunov exponents, Network secu-
rity, Encryption, IP-communication.

1 Introduction

Chaos systems have been studied for decades due to their applications in several
domains such as: electronic circuits [1],[2], network security [3],[4], encryption
domain [5],[6] and in power control [7]. In one hand, chaotic systems’ proper-
ties have been studied and investigated using the bifurcation and the Lyapunov
exponents theories [8],[9]. In the other hand, among the existing chaotic sys-
tems, researchers have investigated for new and more complex systems. By
combining two coexisting attractors, in [10] the evolution of a new 4-dimension
chaotic system is presented and analyzed by using bifurcation diagrams and
Lyapunov exponents’ spectrum. In [11] authors proved that using only sine
or cosine functions and modifying two (02) variables in the function, n-scroll
attractors can be generated. Moreover looking for higher dimension, a new 4-D
hyperchaotic continuous time system is introduced in [15] and its main spec-
ifications are analyzed by means of equilibrium points, stabilities and power
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spectrum. In [16] authors showed that, using 4-D Lorenz system for secure
TCP communicationonl, consume a huge amount of ressources and computa-
tions.
Consequently, we present through this paper an optimized new 4-dimensional
discrete time system for encryption purpose. Then, the chaotic behavior of
the proposed map is investegated based on the bifurcation and Lyapunov ex-
ponent theories. The rest of this paper is structured as follows. The 4-D map
is introduced and the chaotic behavior is investigated in section II. In Section
III, software implementation of secure communication is illustrated using the
proposed map. Finally, a conclusion is given in section IV.

2 The Proposed 4-D Map

2.1 System Description

The proposed 4-D map with (04) bifurcation parameters and (05) non-linear
terms is given as follows:

X(n + 1) = 1− a ∗X(n)2 + (Y (n) ∗ Z(n) ∗ P (n))

Y (n + 1) = 1− b ∗ Y (n)2 + (X(n) ∗ Z(n) ∗ P (n))

Z(n + 1) = c ∗ (X(n) ∗ Y (n) ∗ P (n))

P (n + 1) = d ∗X(n)

(1)

Where X, Y , Z and P are the state variables and a, b, c, d are the control
parameters or the bifurcation parameters.

2.2 Chaos Behavior Investigation

Following the lines given in [12] and [13], the chaotic behavior of the proposed
system (1) is investigated by considering mainly the bifurcation and the Lya-
punov exponents (LE) theories.

Bifurcation process
Bifurcation theory is concerned with changes in the solutions’ behavior of the

proposed system (1) as the parameters a, b,c and d are varying.
Figure 1 shows that chaotic behavior appears in several intervals of the param-
eters a ∈[0.22, 1.00], b ∈[0.90, 2.00], c ∈[-0.95, 0.95] and for the values of the
parameter d ∈[-1.05, 2.5].
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Fig. 1. The bifurcation graphs of the proposed 4-D map.

LE process
Computing the LE values gives a possibility not only to detect all resonances

in the response function, but also to detect the presence of chaos [14]. To search
for strange attractors or for chaos in the proposed model (1), we proceed as
follows:
First, we select the values of the parameters a, b,c and d calculated in the pre-
vious step (bifurcation process). Then we iterate equations (1) repeatedly until
the Lyapunov exponent becomes small or negative, in which case the solution
is probably a fixed point or limit cycle. In either event, we choose a different
combination of a, b,c, d and start over the process.
If, after a few thousand iterations, the solution is bounded (not enormous)
and the Lyapunov exponent is positive, then it is likely that you have found a
strange attractor that corresponds to the chosen values of a, b,c and d.

As a final result, the chaotic behavior is obtained and illustrated by the
trajectory graphs and the signal graphs in figures 3 and 4, respectively.
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Fig. 2. The LE graph of the proposed 4-D map.

Fig. 3. The trajectory graphs of the proposed 4-D map.
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Fig. 4. The signal graphs of the proposed 4-D map.
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3 software implementation of secure Communication

Chaotic systems have been introduced in the network communication security
domain since that they are characterized by their sensitivity, unpredictability
and their widespread spectrum. Hence; we propose to introduce the 4-D chaos
map for securing Client-Server Communication. In the first order, we pre-
pare the Client-Server platform composed of two (02) client stations connected
through an Ethernet network to one (01) server machine (Figure 5).

Fig. 5. The platform test bench.

The proposed platform works considering the following steps :
- The server listens for client connections;
- The client initiates the connection;
- The connection is established;
- The key-Generator load the first random sequence and the next sample;
- The client uses the first key to encrypt and send data to the server;
- The server use the same key to decrypt and send confirmation of receiving
data;
Finally, the client terminates the communication by closing the channel, and
the key-Generator module saves samples for next use with the server.

In the second order, we develop a C# software application for exchang-
ing securely messages between connected computers (figure 7).The developed
application includes a chaos-based cryptosystem using the proposed 4-D map
which is described by the system (2); with a=1.55; b= 1.7; c= 1.6; d= 0.40.
Considering that we are targeting to generate a 32-bit key using the chosen
map, then we have the key space of the cryptosystem 232∗(4+4)=2256 which
is considered very good value in for encryption since that the required value
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should be more than 2100 to satisfy the encryption requirements for key space
[16].

Fig. 6. The developped application’s interface.

4 Conclusion

In recent years; researching and developping new and higher dimensional chaotic
systems become a rising trend in perticular for secure communication purposes.
In this paper, we propose new 4-Dimensional chaotic map in first order. Sec-
ondly, the chaotic behavior of the proposed system is investigated using an
algorithm based on the bifurcation and the Lyapunov exponents properties.
Finally, we apply the proposed system to generate random keys in order to
perform a secure IP-communication.
As future work, statistical and security tests of the proposed system will be
considered as well as the hardware implementation of the proposed scheme.
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Abstract. Two-phase flow past obstacle is widely applied in industries and engineering, where
the interaction of different phases coupled with influence of solid is rather complex. In this
context, the flow characteristics and vortex field have been investigated to explore the mechanism
of two-phase drag and vortex variation. The Lattice Boltzmann Method is utilized to study
the multi-component multiphase flow. The computation implemented on GPU is remarkably
accelerated owing to the natural parallelism of LBM. The process of two-phase flow past a 2D
cylinder is thoroughly examined. The drag forces including the total force and the components
caused by dispersed phase and continuous phase respectively, are illustrated, and themechanisms
for the variations have also been explained. Meanwhile, the vortex-identification approaches
based on the Liutex as well as traditional methods are compared. The relationship between
the breakup as well as coalescence process and extremums of different vortex identification
variables is analyzed.
Keywords: Two-phase flow, flow past cylinder, LBM, vortex identification, Liutex.

1 Introduction

Flow past obstacles is a ubiquitous phenomenon encountered in various industries
including chemical process, food processing and power engineering. For decades,
numerous experimental and numerical efforts have been made focusing on drag and
lift force, vortex separation, flow-induced vibration, etc. The two-phase flow past
obstacles plays a significant role in practical application, such as the packed bed
reactor in petroleum chemical process and heat exchangers in power industry.

In view of the impact of bubbles on the solid, the influence of bubble movement
on vortex shedding and the involvement of bubbles into the vortex, the interaction in
two-phase cross flow between three phases, namely solid, liquid and gas, is coupled
and intricate. Under this circumstance, the traditional computational fluid dynamics
(CFD) methods like Finite Volume Method (FVM) might encounter difficulties and
fail to acquire the details of flow field from macroscopic scale.

Endowed with the advantage of flexible geometry characteristics, inherent paral-
lelism and simplicity of implementation, the Lattice Boltzmann method (LBM) has
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witnessed rapid development in the past decades, particularly in the field of multiphase
flow and flow in complex geometry. Based on the molecular kinetic theory, the LBM
provides a novel and potent approach with solid background of physics and efficient
algorithm in multi-scale analysis from the mesoscopic perspective. With the com-
putation largely restricted to local nodes, the LBM is ideal for implementation with
parallelized hardware such as GPU, which shows an apparent advantage over CPU in
High Performance Computing. The implementation of LBM on GPU contributes to
boosting computation speed and achieving reliable acceleration performance.

As a fundamental research target, the vortex is of vital significance for an intuitive
understanding of turbulence. After decades of intensive research, there are still plenty
of ambiguous issues left to be solved including a widely-acknowledged definition of
vortex. The vortex identification method has evolved from the first generation intuitive
vorticity-based method that fails to discriminate rotational motion from a shear layer
in viscous turbulent flow, to the second generation that rely on other eigenvalue-based
parameters including∆, λ2, λci , etc., which are unfortunately dependent on case-related
uncertain threshold and unable to capture the vortical strength to some extent.

Recently Gao and Liu put forward the third generation Liutex method [1,2], which
provides a more precise perspective of defining vortex. According to the theory,
the vorticity could be decomposed into the non-rotational part, mainly shear and the
rotational part called Liutex, namely ®ω = ®S + ®R. The direction of Liutex vector,
representing the local rotation axis, is defined via the real eigenvector of the velocity
gradient tensor. Themagnitude of Liutex, used to quantify the local rotational strength,
could be simply determined by a explicit formula proposed byWang [3], which follows
the idea of getting rid of the non-rotational part from the vorticity. With the aid of
Liutex, continuous research has been conducted on various applications including the
hairpin vortices [4] and vortex in swirling jets [5,6].

This paper will present a comprehensive investigation on the flow and vortex
field and drag force of multiphase flow past cylinder. The variation of multiphase
drag force with the movement of fluid will be analyzed. The detailed evolution
of the primary variables during the bubble deformation will be discussed for a deep
understanding of its relationshipwith vortex generation and development. Awide range
of identification parameters including the Liutex will be evaluated. The relationship
between extremums of different vortex identification variables and bubble deformation
process, mainly the breakup as well as coalescence, will be analyzed.

2 Models and methods

2.1 Basics of Lattice Boltzmann Method

Lattice Boltzmann Method could be derived from the Boltzmann equation based on
the kinetic molecular dynamics.

∂ f
∂t
+ ®ξ · ∇®x f + ®a · ∇ ®ξ f = Ω( f ), (1)
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where f (®x, ®ξ, t) denotes the particle distribution function that represents the density
of particles with velocity ®ξ at position ®x and time t. The collision operator Ω f

characterizes microscopic interaction between molecules and could be simplified by
single-relaxation-time approximation proposed by Bhatnagar–Gross–Krook (BGK)
[7].

Ω( f ) = −
f − feq
τ

(2)

Through discretizing in the physical space, velocity space and time, the discrete
Lattice Boltzmann Equation (LBE) could be derived,

fi(®x + ®ciδt, t + δt) − fi(®x, t) = (Ω(®x, t) + Fi(®x, t))δt (3)

where ®ci represents the discrete velocity direction, and fi(®x, t) is the particle distribution
function along the direction of ®ci . The widely adopted discretization model is usually
expressed as DdQm, where d and m denotes number of dimensions and velocities. For
2D simulation D2Q9 is adopted.

The macroscopic parameters such as density, velocity and internal energy can be
calculated statistically from moments of the discrete distribution function.

ρ =
∑
i

fi, ρ®u =
∑
i

ci fi, ρe =
1
2

∑
i

( ®ci − ®u)2 fi . (4)

By means of the multi-scale expansion techniques such as Chapman-Enskog anal-
ysis, the LBGK model could recover continuity equation and Navier-Stokes equation
at the macroscopic scale under the limit of small Mach number.

2.2 Multiphase Lattice Boltzmann methods

In multiphase flow simulation, the Shan-Chen model [8] incorporates a repulsive
or attractive Shan-Chen force, which does not need any explicit interface tracking.
Compared with other models, the Shan-Chen model has satisfactory performance in
both efficiency and accuracy and is adopted in the multiphase LBM simulation.

For single-component multiphase flow, the interaction force density acting on fluid
at ®x can be computed via integral over all possible interaction sites ®x′ .

FSC(®x) = −
∫
(®x
′

− ®x)G(®x, ®x
′

)ψ(®x)ψ(®x
′

)d3 ®x
′

(5)

where ψ(ρ) also called pseudo-potential denotes the effective density. G(®x, ®x
′

) is a
Green function to determine the strength and range of interaction, with the simplest
form concerning nearest lattice neighbors.

G(®x, ®x
′

) =


wiG ®x

′

= ®x + ®ciδt

0 otherwise
(6)
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In a multiphase fluid system constituted by n components, the LBE of Shan-Chen
model can be expressed as

f σi (®x + ®ciδt, t + δt) − f σi (®x, t) =
f eq(σ)i − f σi

τσ
δt + (1 −

δt
2τσ
)Fσ

i (®x, t) (7)

where f σi , f eq(σ)i , τσ,Fσ
i is the distribution function, equilibriumdistribution function,

relaxation time and forcing term of the σ component.
The total interaction force acting on the σ component can be computed by adding

the force imposed by all the components.

Fσ
SC(®x) = −ψ

σ(®x)
∑
σ
′

Gσσ
′

∑
i

wiψ
σ
′

(®x + ®ciδt) ®ciδt (8)

In the present work we focus on the two-component multiphase system without
phase change, namely n = 2 and Gσσ = 0. Gσσ

′ is set as positive for repulsive
force between different components. The overall density, weighed average velocity
and pressure of the fluid are calculated as follows.

ρ =
∑
σ

ρσ, ®u =
∑
σ(ρσ ®uσ/τσ)∑
σ(ρσ/τσ)

, p = c2
s (ρσ + ρσ′ ) + c2

sGρσρσ′ (9)

2.3 Momentum Exchange Algorithm of the Bounce-Back method
The widely adopted method to implement no-slip wall boundary condition in LBM
is the Bounce-Back method, with the advantage of simplicity of implementation and
guaranteed mass conservation. However, the traditional Bounce-Back method in the
regular lattice could only approximate arbitrary boundaries with stair-case shapes,
which might introduce large errors at cells nearby boundaries. While by increasing the
mesh resolution the error could be reduced and the results approaches precise solution.

In the context of Bounce-Back scheme, the Momentum Exchange Algorithm
(MEA) is adopted to calculate the force in this paper. The basic idea of MEA is
to identify the populations across the boundary and calculate the net momentum trans-
fer consisting of two parts, namely the momentum carried by the fluid to the wall f ini
and the momentum transported from the wall to the fluid f out

ī
. The procedure includes

the following steps [9].
• Identify the momentum links between solid and boundary nodes xwi .
• Evaluate the incoming populations f ini and bouncing populations f out

ī
of each

momentum link.
• Calculate the transferred momentum during the time steps and acting force on the
boundary.
The drag and lift forces are calculated using MEA in the following section. The

drag force FD is to quantify the resistance in the opposite direction of flow. The lift
force FL is in the orientation perpendicular to the flow direction. Thus they can be
evaluated by the components of total force in X and Y direction. Since the force is cal-
culated via the populations f , for the multi-component case in present paper, the force
of theσ component could be obtained based on the populations of each component f σ .
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2.4 Parallel Implementation of LBM on GPU

For practical convenience, the main process of calculation of LBE can be decomposed
into two parts, namely collision and streaming. With the features of ‘non-linearity is
local’ in collision step and ‘non-locality is linear’ in streaming step, LBM is naturally
suitable for computation on parallel architecture including GPU. GPU is capable of ex-
ecuting a multitude of threads in parallel simultaneously. which could take advantage
of thousands of cores in GPU and remarkably boost the computation. The implemen-
tation of LBM on GPU has aroused wide research interest and proved successful in
delivering reliable performance. In this paper, the open-source software Sailfish is
adopted for the simulation. The computation was implemented on NVIDIA Tesla K20
GPU.

2.5 Vortex identification method and Liutex

Several well-acknowledged identification parameters are selected including the vor-
ticity ω [10], Q [11], R [12], Ω [13], ΩR [14] and Liutex R [15], which are defined
by:

ω = ‖ ®ω‖ = ‖∇ × ®u‖

Q =
1
2
(‖B‖2F − ‖A‖

2
F )

Ω =
‖B‖2F

‖A‖2F + ‖B‖
2
F

=
b

a + b

ΩR =
β2

α2 + β2 + ε

®R = R®r =
(
〈 ®ω, ®r〉 −

√
〈 ®ω, ®r〉2 − 4λ2

ci

)
®r

(10)

where A = 1
2 [∇®u + (∇®u)

T ], B = 1
2 [∇®u − (∇®u)

T ] are the symmetric and antisym-
metric parts of the velocity gradient tensor, respectively. a = ‖A‖2F , b = ‖B‖2F ,

where ‖ · ‖2F represents the Frobenius norm. α = 1
2

√(
∂V
∂Y −

∂U
∂X

)2
+

(
∂V
∂X +

∂U
∂Y

)2

and β = 1
2

(
∂V
∂X −

∂U
∂Y

)
, where while U, V and W represent the velocity compo-

nents in the XYZ coordinate satisfying ∇®V = Q∇®uQT by a rotation matrix Q and
[∇ ®V]1,3 = [∇ ®V]2,3 = 0. ε is a small positive parameter. λci and ®r are the imaginary
part of the complex eigenvalue and the real eigenvector of ∇®u, respectively. In this
work, these criteria will be used for comparative analysis of vortex motion.

2.6 Validation

In this section, the LBM model is firstly validated against 2D single-phase flow past a
cylinder to verify the accuracy of force evaluation. Then the Laplace test is conducted
to examine the multiphase model.
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For two-dimensional case, with the characteristic length corresponding to the
obstacle’s diameter, the drag and lift coefficient and the Strouhal number are calculated
as follows.

CD =
FD

1
2
ρDū2

, CL =
FL

1
2
ρDū2

, St =
f D
ū

(11)

The comparison of simulation results with validation reference is displayed in Table
1. On the whole, the simulation results show in good conformity with benchmark in
Schaefer’s paper[16].

As for the multi-component Laplace test, a spherical droplet of one phase with
radius R is initialized surrounded by the another liquid phase. The interface is deter-
mined where the density reaches the average of the bulk densities inside and outside
the droplet. The result of Laplace test is displayed in Fig. 1, where the relationship
between measured pressure difference ∆p and 1/R is linear, with coefficient of deter-
mination of the fitted lines above 0.999, in desirable agreement with the Laplace Law,
namely ∆p = σ/R.

Concerning the two-phase model validation, it has been completed in our earlier
work [17], by the validating the bubble departure diameter and release period. In
addition, the GPU performance of LBM has also been tested and validated via the
cavity driven flow case in another earlier work [18].

On the whole, the LBMmode, two-phase scheme, GPU performance have already
been well validated.

(a) Density contour (b) Data fitting

Fig.1. The validation of Laplace test for multi-component case

3 Results and discussion

3.1 Numerical setup

Theflowdomain is discretized by 256×1024Cartesianmesh grids. The two-dimensional
cylinder obstacle with the diameter of 100 nodes is placed right in the center of channel
and referred to as cylinder in the following sections. Initially a circular bubble of the
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Table 1. Validation of flow past a 2D cylinder
Re 20 100

CD CL CDmax CLmax St
Present result 5.5499 0.0118 3.2877 0.9842 0.3062

Benchmark lower bound 5.57 0.0104 3.22 0.99 0.295
Benchmark upper bound 5.59 0.0110 3.24 1.01 0.305
Benchmark bounds refer to the results in Schaefer’s paper[16]

dispersed phase is set up at the upside of channel with the diameter equal to 100 nodes,
which will be called bubble later. The rest of field is filled with the continuous phase.
Note that the density contour denotes the density of the continuous phase. Referring
to previous multi-component multiphase research [19], the viscosity of the two phases
are set as the same and the parameter G is determined via Gρ = 1.8. The initial
velocity of the bubble and the force is in the downward direction.

3.2 The evolution of two-phase flow

The evolution of density contour is shown in Fig. 2, where the typical image during
the progress is presented. With initial velocity and imposed force, the bubble moves
towards the cylinder. As the nearly round bubble approaches the obstacle, the hindrance
from the obstacle flattens the bubble at the bottom (at T=6300). Subsequently it is
separated by the solid (at T=7600) and stretches to a great extent (at T=10400), till
the filament between the bubble becomes unstable and breaks up into several satellite
bubbles (atT=10800). The four small bubblesmove along the periphery of cylinder and
successively detach from the solid (at T=12300). Influenced by the vortex field behind
the obstruction, bubbles move towards center-line and become closer (at T=14000).
Involved in the vortex behind the obstacle, the distance between two bubbles reduced
and they coalesce for the first time (at T=15600) and finally merge into one bubble (at
T=18100).

3.3 The evolution of drag force

The evolution of drag force is shown in Fig. 3. As the bubble approaches the cylinder,
the drag force of continuous phase Fc

D increment steadily while that of the disperse
phase Fd

D declines inversely, leading to the increase of total drag force Ftotal
D . This

variation results from the compression of the fluid between the bubble and solid due
to the movement of the bubble. This trend continues until Fc

D attains its maximum at
T=7625 and Fd

D reaches theminimum atT=7689, when the bubble surrounds nearly the
upper half part of cylinder. Then the bubble covers the majority of cylinder periphery
and the tendency of the curves converts into the opposite, namely Fc

D decreases till
it reaches the minimum at T=10751 and conversely Fd

D increases till its maximum at
T=10766. Ftotal

D plunges and attained its minimum at T=10741. With the portion of
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(a) T=6300 (b) T=7600 (c) T=10400 (d) T=10800

(e) T=12300 (f) T=14000 (g) T=15600 (h) T=18100

Fig.2. The contour of density at different time steps

bubble coverage of cylinder periphery increasing, Fd
D consequently enhances and Fc

D
reduces, until the bubble is over stretched and break up into pieces. Therewith the
continuous phase regains the contact with cylinder and Fc

D boosts, arriving at a local
maximum at T=11633. In contrast Fd

D drops towards a local minimum at T=11617.
Afterwards the curves gradually flatten out.

Fig.3. The evolution of drag force
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3.4 The evolution of R, S, ω and comparison of vortex identification methods

Based on the relation of ®R + ®S = ®ω, the evolution of R,S and vorticity ω at different
time steps are shown in Fig. 4 and Fig. 5.

For the evolution of breakup process in Fig. 4, before bubble brings into contact
with solid, some zones with negative Liutex appear inside the bubble in the bottom
and lateral at T=6300. As the deformation affects the distribution of Liutex, there exist
negative zone in the center and positive zone on the sides atT=7600. AtT=10400 there
exist zones with positive Liutex between and ahead of the stretched bubbles, as well
as zones with negative Liutex laterally adjacent to them. When the break-up of bubble
occurs at T=10800, magnitude of Liutex near the position of fracture is relatively high
in positive or negative value. As the surface tension transform the bubble into a nearly
round shape at T=11600 and T=12300, zones with high magnitude of negative Liutex
inside the bubbles are observed.

For the evolution of coalescence process in Fig. 5, when the small bubbles merge
together, the distortion results in zones with high level of magnitude of Liutex both
inside and around the bubble. Taking the coalescence of two bubbles in the right as an
example, atT=15500 there appear negative Liutex zone near the line of bubble contact.
At T=15600, there are positive Liutex zone inside the bubble and alternatively positive
and negative Liutex outside the bubble. At T=15700, the negative Liutex zones have
disappeared and the positive zones also shrink in area and decrease in magnitude.

On the whole, S and Ω show similarity with each other in distributions and mag-
nitudes. Mainly, the bubble’s motion and shape dominate the variations of shear and
vorticity, whose distributions and magnitudes are so close that the variations of R
plays merely a fairly secondary role. Because of the relatively low velocity, shear de-
formation plays the dominating role on the vortex evolution characteristics. However,
indicated by R, the pure rotational motion also shows clear features dominated by the
formation of bubbles deformation, breakup and coalescence.

Moreover, considering the immediate moment when the bubble breaks up for
example, Fig. 6 shows the comparison of the varied vortex identification approaches
defined by Eq. (10), where R, Q, ω, S, Ω andΩR can all show the basic characteristics
of vortex structure partly yet some differences still exist.

At the moment of bubble breakup, rotational vortices are formed around the four
small satellite bubbles near the cylinder. In the meantime, in the downside of the
square obstacle, some small pure rotational vortices are also formed. The rotational
vortexes are formed around the locations with sufficiently large or locally maximum
curvatures of interface, such as around the ends of the stretched bubbles. The reason
lies in that the vortex can only be generated when and where the shear is too large for
the fluid to resist. Thus vortices may be generated during the bubble breakup near the
region with sufficiently large curvatures of interface.

In addition, R and Q show comparatively similar distributions in pairs, which
evaluate the vortex by absolutely rotational strength. Whereas Ω and ΩR show com-
paratively similar distributions in pairs, which determine the vortex by relatively levels
of strengths of rotation to shear.
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(a) T=6300

(b) T=7600

(c) T=10400

(d) T=10800

(e) T=11600

(f) T=12300

Fig.4. The evolution of R,S and ω at T=6300, 7600, 10400, 10800, 11600 and 12300
respectively
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(a) T=15500

(b) T=15600

(c) T=15700

Fig.5. The evolution of R,S and ω at T=15500, 15600 and 15700 respectively

Fig.6. The contour of primary variables at T=10800
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3.5 The evolution of Rmax and Smax

The evolution of statistics of primary variables of the dispersed and continuous phases
will be discussed in this and following sections. The local maximums and minimums
are represented by means of red and blue marks in the figures. In order to relieve
the burden of computation, the data is possessed every ten time steps, resulting in the
exhibited tenfold extremes.

Firstly, the maximum value of R (namely Rmax) is shown in Fig. 7. In Fig.
(7a), it is noteworthy that the data of Rmax is only selected from the interior of the
bubble (dispersed phase). There exist three distinct peaks at T=10830, T=15480 and
T=18050. Thus both the maximum and minimum of Liutex experience extremes at
T=10830. Whereas in Fig. (7b) the data of Rmax is only selected from the exterior
of the bubble (continuous phase). The remarkable peaks locate at T=10770, T=15460
and T=18030.

By Fig. (7b), the suddenly sharp increase of Rmax at about T = 10770 is caused by
the very moment the bubble begins to break up into small satellite bubbles, whereas the
peak of Rmax at T = 15460 corresponds to the moment when small bubbles coalesce
into large ones for the first time. Similarly, the peak of Rmax atT = 18030 corresponds
to the moment when bubbles merge into one eventually. In Fig. (7a) for the dispersed
phase, the sharp peaks of Rmax correspondingly coincide with that of the continuous
phase in Fig. (7b). The small differences of peak times of Rmax between Fig. (7a)
and Fig. (7b) are caused by the tiny differences of rotational motion of vortices of the
two phases.

Moreover, detailed inspection also indicates that the peaks of Rmax of the dispersed
phase are later than that of the continuous phase. It may possibly be deduced that the
rotational vortex or the vortical motion is transferred from the exterior to the interior
of the bubble. In other words, the vortex inside the bubble is induced by the external
shear or rotational motions.

On the other hand, with regard to the evolution of the maximum of shear, Smax ,
in Fig. (7c) for the dispersed phase, the three remarkable peaks locate at T=11010,
T=15500 and T=18080, with the location approximate to that in Fig. (7a). In Fig. (7d)
for the continuous phase, the curve manifests a distinct peak at T=11000 and a minor
peak at T=18050.

Comparing Figs. (7c) and (7d) to Figs. (7a) and (7b), it is also clear that the peaks
of Rmax and Smax almost take place simultaneously. In traditional applications, the
vortex is always identified by vorticity, which in current situation is mostly dominated
by shear rather than pure rotation. However, like in Fig. 7, as the maximum of real
vortex indicated by Rmax can also be identified by the maximum shear Smax , using
vorticity identification methods is somewhat usable if the most accurate description of
vortex is not needed.

Nevertheless, the first peak of Rmax is closer to the moment of bubble break-up
than that of Smax . Besides there is no peak near the first coalescence of bubbles in Figs.
(7d). Therefore, using R to quantify the pure rotational vortex is mostly encouraged in
two-phase flows, either for vortices in the dispersed phase or in the continuous phase.
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(a) Rmax of dispersed phase (b) Rmax of continuous phase

(c) Smax of dispersed phase (d) Smax of continuous phase

Fig.7. The evolution of maximum of R and S

3.6 The evolution of Qmax

The evolution of Qmax is shown in Fig. 8. Respecting the maximum of Qmax , in Fig.
(8a) for the dispersed phase, there exist three remarkable peaks located at T=10830
and the other two at T=15480 and T=18050. Referring to previous figures, these peaks
are on the location near the bubble break-up and coalescence. In Fig. (8b) for the
continuous phase, two peaks lie at T=15550 and T=18030, while the curve reaches
minimum at T=10880 and experiences drastic fluctuations.

To sum up, it is found that Qmax could also indicate the two-phase vortical motion.
In other words, it is also an applicable indicator for shape deformation of bubbles and
rotational motion of fluids to some extent, yet not as good as Rmax .

3.7 The evolution of Ωave and Ωave
R

Finally, the evolution of Ωave and Ωave
R are shown in Fig. 9. In this section, the

averaged values of Ω and ΩR over the dispersed or continuous phases are illustrated.
Concerning Ωave, Figs. (9a) and (9b) show the mean values of Ωave of the

dispersed phase and continuous phase respectively. The Ωave of dispersed phase first
climbs to a maximum atT=6180. Subsequently it falls back yet rises again and exhibits
drastic fluctuations afterwards. This kind of variation of Ωave of the dispersed phase
clearly indicates the variation of vortical motion inside the bubbles, which is clearly
more smoothly and varied more slowly than the variation of Ωave of the continuous
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(a) Qmax of dispersed phase (b) Qmax of continuous phase

Fig.8. The evolution of maximum of Q

phase (Fig. (9b)). As a whole, neither Ωave of the dispersed phase nor that of the
continuous phase indicate the instantaneous variations of the vortex motion of the
two-phases as good as using Rmax .

Figs. (9c) and (9d) show the variations of Ωave
R of the dispersed and continuous

phases. In this condition, the variation ofΩave
R shows much clearer features thanΩave.

To say specifically, Ωave
R is always fluctuating more evidently and intermittently than

Ωave. Moreover, the peaks ofΩave
R also take place around the points of suddenly sharp

change of former vortex identification methods, e.g. Rmax or Qmax , such as the peaks
at T=11050, T=15920 and T=18470.

Referring to Eq. (10), the mechanism may lie in the definition of Ωave
R . Generally

speaking, α and β are better than A and B for defining the pure rotational motion of
fluids. α and β are used to define R or the pure rotational vortical motion. Conversely,
A and B with possible shear deformation, are not indicating the pure rotational motion
features. Hence, it is still very clear to evaluate even the total level or strength of the
rotational motion of fluids by using α and β.

4 Conclusion

In this work, we presented the characteristics of vortex and drag force of two-phase
flow past a cylinder using Liutex-based analysis through validated multiphase LBM
model on GPU computation. The main findings can be summarized as follow:

• Regarding the evolution feature, the bubble may be deformed and stretched greatly
until its final breakup during the process of flow past the cylinder. After that, the
small satellite bubbles may gradually coalesce to make larger ones successively in
the downstream.
• Dominated by the bubble behavior, the drag force components caused by the
dispersed bubble phase and continuous fluid phase show the opposite trend. The
mechanism of variation of force components results from the specific variations
of velocity and density of the two-phases.
• Influenced by the two-phase interaction behavior, the vortex identification method

R successfully describes the region of pure rotation of fluids, though itsmagnitudes
are small compared to the shear of fluids.
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(a) Ωave of dispersed phase (b) Ωave of continuous phase

(c) Ωave
R

of dispersed phase (d) Ωave
R

of continuous phase

Fig.9. The evolution of average of Ω and ΩR

• Via averaging over the respective phase fields, ΩR shows evident advantages
compared to Ω, since ΩR can not be weakened by the averaging process, whereas
the Ωave fails to show such kind of features.
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A dynamic mathematical model 

 

 

Abstract 

 

This paper began with the hypothesis that there is an intrinsic mutualistic dependence 
between the bio-economic performance of banks and that of enterprises. Indeed this 
supposition is sustained by the comprehensive presentation herein of the correlations 
calculated on the data of Italian system. At the very least, this law seems plausible in relations 
among financial intermediaries and smaller enterprises.  
Therefore, this research concentrated on developments within the bank-enterprise system 
(and, as a repercussion, in households), since clearly, the positive effects, including the impact 
on macroeconomics, generated by an efficient banking sector in the supply of funding to the 
productive infrastructure, so that it can remain healthy and efficient, should not be 
overlooked (nor, on the contrary, should the negative effects produced by the disappearance 
such a virtuous cycle). Hence, through the use of dynamic models, this paper posits a 
mathematical argument, which evaluates the structural trends of the populations of banks 
and companies with respect to the more or less expansive strategies of the former, in granting 
credit. 
Empirical observations of the negotiation of loans to enterprises can also be represented as a 
“critical stress utilization” of the capacity of (micro)enterprises to generate positive economic 
variations using ever less financial leverage. This has led to the assessment of stable and 
unstable points of equilibrium, of the bifurcations generated and of their irreversibility 
(hysteresis), resulting in, on the banking side, stopping profits and an increase in non-
performing loans. 
Finally, it was investigated whether there is an optimal minimum level of credit leverage to 
the system, also in light of the current destabilization caused by the SARS-COVID19 
emergency, and therefore of the better "sealing actions" that must be conferred to the system 
itself. 
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1. Introduction 
 
Banks, especially commercial banks – that is to say, institutions, which cannot, due to 
regulatory restrictions (or limitations), engage in business other than financial intermediation 
– are acutely dependent on the performance of their customers. It has been equally well 
established that banks, in performing their lending functions, implement their strategies 
based on the criteria of commerce and profit: loans are represented by risk portfolios whose 
overall weighting is derived from the aggregate of segmented units, which in turn are based 
on precise evaluations of each individual counterparty. This paper endeavours to study the 
effects of these two objectives being systematised, in order to define whether there is an ideal 
level – a quantitative optimum – of total loans to be disbursed by banks to companies. Starting 
from the reasoning that there is an average portfolio of clients, where all the n positions that it 
comprises2 have the same PD – Probability of Default, the same LGD – Loss Given Default and 
the same EAD – Exposure at Default, the total expected losses 𝑇𝐸𝐿𝑛 – which represent a cost 

and which will be accounted for in the bank's income statement – will be 3: 
 𝑇𝐸𝐿𝑛 = 𝑛 ∗ 𝑃𝐷 ∗ 𝐸𝐴𝐷 ∗ 𝐿𝐺𝐷       [1] 

Then add the unexpected losses, which represent a capital constraint for the banks and which 
determine the level of caution that they will increasingly adopt in the disbursement of loans. 
By applying the “Vasicek model”, with the observance of a time t = 1 year: 

𝑇𝐿𝑛 =  ∑ 𝑈𝑖𝐿𝐺𝐷𝑖𝐸𝐴𝐷𝑖       [2]

𝑛

𝑖=1

 

Where: 
𝑇𝐿𝑛 is the total loss on the portfolio over the time t; 
𝐿𝐺𝐷𝑖 and 𝐸𝐴𝐷𝑖 where there will be the LGD and the EAD of the i-th company respectively; 
𝑈𝑖  is the Boolean indicator, which takes on a value of 1 if the i-th enterprise has reached 
default within time t, or the value 0 if the i-th enterprise has continued to be performing in the 
range considered. This is a function of the amount 𝑥, which represents a Gaussian variable of 
the macroeconomic context and which indicates an additional scenario in which the 
enterprises in the portfolio operate: 

 𝑥𝑖 =  𝜐𝐾 + 𝜏𝑒𝑖       [3] 
where K is the random variable strictly interpreted from the macroeconomic context, while 
the 𝑒𝑖 element indicates the random idiosyncratic factor of the individual counterparty. Then 
𝜐 and 𝜏 are the respective multipliers, one of which is often set as known a priori. It should be 
pointed out that a certain component of 𝑒𝑖 is however dependent on K. Therefore: 

𝑇𝐿𝑛 =  ∑ 𝑈𝑖(𝐾, 𝑒𝑖)𝐿𝐺𝐷𝑖𝐸𝐴𝐷𝑖

𝑛

𝑖=1

       [4] 

𝑈𝑖(𝐾, 𝑒𝑖) replaces the 𝑃𝐷 in the formula and indicates the likelihood that the default of 
enterprise i will occur, based on its own idiosyncratic factor 𝑒𝑖 and on the conditions of its 
macroeconomic context4. Since, 𝐿𝐺𝐷𝑖 and 𝐸𝐴𝐷𝑖 are assumed to be known a priori, the need to 
maximise 𝑒𝑖 and K 5 appears to be clear, limiting ourselves to the bank-enterprise relationship, 
by both of these entities in cohabitation within the economic system: with the banks needing 
to minimize losses and reduce capital absorption, and the enterprises needing to obtain credit 
and do business sustainably and profitably. 

                                            
2 Cf. Conti (2016).  
3 Losses in the portfolio measured ex post with minimal deviations. 
4 For a more thorough development of this reasoning, see Desogus & Venturi (2019). 
5 A targeted analysis of the K component, based on the same initial postulate, was conducted by Desogus & Casu 
(2020). 
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Clearly, there are even more macroscopic components inside of K, including monetary policy, 
international economic influences, credibility and trust of the country, etc. This is why we are 
focusing our attention on the dynamics of the bank-enterprise system (and, in turn, 
households), since we cannot overlook the positive influence, including macroeconomic 
effects, generated by an efficient banking sector in the transmission of liquidity to the 
productive complex so that it can remain healthy and performing (and, on the contrasting 
condition, where there are the negative effects produced by the disappearance of this virtuous 
cycle)6. We shall call the population of the banks 𝑍1 and the population of the companies (in 
portfolio) 𝑍2 and that 𝑧1 = 𝑧1(𝑡) and 𝑧2 = 𝑧2(𝑡) are the manifestations of loans performing (or 
in bonis)7 over the time t of the two populations 𝑍1 and 𝑍2 respectively: 

{

𝑑𝑧1

𝑑𝑡
= 𝑧1𝑓1(𝑧1, 𝑧2)

𝑑𝑧2

𝑑𝑡
= 𝑧2𝑓2(𝑧1, 𝑧2)

       [5] 

This system of differential equations indicates the dependence of the number of performing of 
each population on that of both8: the link between the two populations is in fact intrinsically 
mutual 

𝜕𝑓1

𝜕𝑧2
> 0      and       

𝜕𝑓2

𝜕𝑧1
> 0       [6] 

If the above can be viewed as empirically acceptable – a healthy productive sector resonates 
with a healthy banking sector, which continues to be capable of strengthening the good 
condition of companies – it is necessary to delve into the dynamics of the bank-enterprise 
system, taking the limits set by the K and e components into account. These limits, which are 
at first felt at each company within the 𝑍2 population, provide 𝑧2 a logistical trend with a 
maximum value that is always less than the totality of 𝑍2 and the procedural and strategic 
constraints on the banking business at the time of deliberation and approval. 
 
 

2. Methodological notes and Italian data-set 
 

Hence, the first step will be to analyse the complexity and non-linearity of the interactions 
between the population of banks and the population of companies, and to examine the 
equilibrium points in the dynamic system arising from these interactions. Specifically, there 
will be the defence of the idea that the contraction of credit, especially to micro and small 
enterprises, in their correlation with the increase in the mortality rate of those same 
businesses and the deterioration of existing credit, produces “bio-economic” effects, which are 
very similar to the observations of exploitation (more precisely, over-exploitation) of 
resources in the same system – inhabited by both populations – by the dominant species or 
player. It can be empirically deduced how excessive exploitation by a generic agent may cause 
difficulties in the regeneration of resources, which could therefore lead to negative 
consequences for the entire system.  
As has been acknowledged, each company can generate positive flows towards the banking 
system that can be broken down into different forms: 

- the creation of income, part of which becomes bank deposits through savings and thus 
a form of funding for the banks; 

                                            
6 Cf. Iyer et al. (2014), and Petrosky-Nadeau (2013). 
7 The rationale for default levels could be developed in contrasting terms: the final result would be the same. 
8 Cf. Düllmann & Kick (2014). 
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- the payment of intermediation charges (broadly understood), which constitute income 
for the bank. 

For the purposes of this paper, it will also be necessary to semantically adapt the concept of 
the exploitation of the “enterprise” resource. If, in fact, the role of banks’ intervention does 
change in its depth and adequacy through the reduction of credit leverage below a certain 
threshold, we will see a phenomenon that is only deceptively positive for banks, and only in 
the short-term, given the reduction in supervisory provisions (and greater available liquidity) 
as well as more contained risk indicators in the portfolio. However, an excessive restriction of 
credit, which is gradually tightened over time, means jeopardising the favourable 
environment for the resilience of the system of production and business in general, as can be 
seen from the data in the tables below, extracted from the Italian case, taken as an example9. 
 
 

Figure 1 – Loans to enterprises in Italy, in million Euros 
 

 
 
 
 
Figure 2 – Net non performing loans in Italy, in million Euros (March 2012 – March 2017) 
 

 
 
 

                                            
9 Tables in the appendix. Processing based on data from the Bank of Italy, ISTAT and Chambers of Commerce. 
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  Figure 3 – Total number of Italian enterprises 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 – Number of Italian micro enterprises 
 

 
 
 
The scenario, presented here among the figures shown above, begins from the progressive 
reduction in the disbursement of loans – which we assume to be an independent variable – to 
which a general increase in net non-performing loans until the first quarter of 2017 can be 
reasonably correlated (mean Bravais-Pearson correlation coefficient at March 2017 = –0.57). 
Nevertheless, the repercussion of this manifestation has different results according to the size 
of the business. On the one hand, micro enterprises leave the market more quickly than new-
co companies of a similar size, on the other, macro enterprises seem not to be affected by this 
phenomenon. However, the incidence of the macro-enterprise component corrects the total 
figure only slightly. 
In fact, from the data-set adopted, the correlation between the reduction in the volume of 
credit granted to the production system and the number of SMEs operating on the market 
came to +0.73. 
For the sake of methodological completeness, another observation should be made on the 
trend in non-performing loans from March 2017 to December 2019, still net of the NPLs sold.  
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Figure 5 – Net non performing loans in Italy, in million euros (June 2017 – September 2019) 
 

 
 
As can be seen in Figure (5), the data transmitted by the banks seem to show a reduction in 
impaired loans. Instead, this phenomenon is due to recent ECB provisions on the management 
of non-performing loans: specifically, the March 2017 guidelines and subsequent addenda, 
which strengthened monitoring procedures and at the same time, provided incentives for the 
sale of those loans. These actions – evidently – led to provisions and losses, respectively, in the 
banks' balance sheets. ABI (Italian Banking Association), in its 2018 and 2019 reports, posted 
disposals for 50-70 billion euro per period. Moreover, even before the SARS-COVID-19 
emergency, it estimated an outlook for a new growth in non-performing loans, even net NPLs, 
for the 2020-2021 two-year period. 
Therefore, this point of view will interpret banking business as aimed at exploiting the 
system, continuing to attract enterprise savings and reducing risks and risk capital. This, as 
widely cited in the literature10, causes shocks in enterprise resources and reduces those same 
resources, even leading to extremely critical scenarios. Evidently, this also penalizes the very 
stability of the system and will end up affecting the banks’ balance sheets in terms of lower 
stocks of funding as well as higher costs due to deteriorated assets and net losses11. Expanding 
the frame of reference to the whole economic system, since income from salaried employment 
is also transferred from companies, the harmful effects will have a procyclical affect on the 
entire nation’s macroeconomics12. 
 
 

3. The evolution of the population of enterprises in relation to available leverage. A 
first dynamic model 

 
Let us proceed with some dynamic analyses, 13 and indicate with 𝑋 the periodic stock of 𝑍2 

𝑋(𝑡 + 1) = 𝐹(𝑋(𝑡)) = 𝑋(𝑡) + 𝐺𝑋(𝑡) − 𝐶(𝑡)      [7] 

The formula [7] represents, over time, the metaphorical quantity of the renewable resource 
made up of enterprises, with the connotation given above. 𝑡 identifies the time, represented 
(for now) by discrete intervals, which, in line with the characteristics of the system 

                                            
10 Ex multis, cf. Bernanke et al. (1996). 
11 Cf. Wehinger (2014). 
12 Cf. Buera et al. (2015). 
13 The following mathematical analyses is partly inspired by and conducted based on – with the appropriate 
adaptations to the contents here treated –the contribution of Bischi et al. (2005). 
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considered, can be quarters, half-years or years. 𝑋(𝑡) is the number of the enterprise 
resources; 𝐺 is its growth rate in the unit of time and for each population unit; 𝐶(𝑡) gives an 
account of the quantity of the resources that are lost (“exploited”) and therefore the 
enterprises that have left the market or that have shown defaults as a result of the lesser 
banking support. 
The temporal evolution of the model is described by the function that provides the law, which 
determines the evolution of the quantity of the enterprise resource in ‘𝑡 + 1’, it being known 
at the time 𝑡 and hence increased by its natural growth capacity or decreased by the quota 
lost. 
The first deduction we can make using this equation concerns the existence of a condition of 
equilibrium when 𝑋(𝑡 + 1) is equal to 𝑋(𝑡): that is to say, when the population remained 
constant over the range and that therefore 𝐺𝑋(𝑡) is equal to 𝐶(𝑡). Scrutinizing this last 
relation, it becomes equally clear that the proposed law takes both the bio-ecological 
characteristics (𝐺 factor), and the action of the agent banks (𝐶 factor) into account. If the 
latter, in 𝑡, is less than the 𝐺 function, then there will be an increase in the population of 
enterprises over the period ‘𝑡 + 1’ and vice versa there will be a reduction in the number of 
enterprises. The Italian data highlight this situation, among other things, as a performance 
trend in the 𝑛 intervals examined. This model could be represented by means of a continuous 
variable and therefore with instantaneous evolution through the use of the derivative 𝑑𝑋/𝑑𝑡. 
Nevertheless, it seems that the phenomenon being discussed in this section would be more 
correctly represented through the periodic growth model because of its own aforementioned 
intrinsic characteristics. 
In the absence of a credit crunch, we can approximate 𝐶(𝑡) = 0 and the population of 
enterprises will describe a quantitative evolution based solely on the micro- and macro-
economic context in which it is operating. In this scenario, it is assumed that in each period 𝛾𝑋 
new individuals enter the market and 𝑙𝑋 leave due to “natural causes”. We can rewrite the 
equation [7] as follows: 

𝑋(𝑡 + 1) = 𝑋(𝑡) + 𝛾𝑋(𝑡) − 𝑙𝑋(𝑡) = (1 + 𝛾 − 𝑙) 𝑋(𝑡)      [8] 
Where 𝐺 = 𝛾 − 𝑙 is the population growth rate and the 𝑋(𝑡 + 1) = 𝛾𝑋(𝑡) model is linear and 
depicts a geometric progression due to 𝑔.  

𝑋(1) = 𝑔𝑋(0);   𝑋(2) = 𝑔𝑋(1) = 𝑔2𝑋(0);  … ;    𝑋(𝑡) = 𝑔ᵗ𝑋(0);  …       [9] 
With 𝑔 < 𝑙 (and therefore 𝑔 < 1), the progression converges to zero exponentially. If 𝑔 = 𝑙 
the population number remains the same and will therefore have a constant value. If instead 
𝑔 > 𝑙 , and therefore 𝑔 > 1, there will be a population growth trend moving toward infinity 
with an exponential function14. 
The mortality rate of the enterprises 𝑙, is determined not only by the disappearance of 
leverage, but is also subject to other micro- and macro-economic causes. For example, there is 
the context of the country in which they are inserted or the level of competition that exists 
among them. As concerns the latter, we can write 𝑙 = 𝜆𝑋 where the parameter 𝜆 precisely 
indicates the greater difficulty – and, conversely, the easiest exit from the market – in the case 
of an increase in product competitors. 𝐺 therefore, subsequent to this additional step, is equal 
to 𝛾 − 𝜆𝑋. This function, represented by a straight line, is zero in 𝐾 = 𝛾/𝜆 and this is an 
equilibrium point with zero growth, called ‘carrying capacity’. 

𝑋(𝑡 + 1) = 𝐹(𝑋(𝑡)) = (1 + 𝛾) 𝑋(𝑡) − 𝜆𝑋(𝑡)2       [10] 

We are here facing a model that has become non-linear, where the 𝐹(𝑋) function is a parabola 
with the intersection of the abscissae in 𝑋 = 0 and 𝑋 = (1 + 𝛾)/𝜆. The system’s equilibrium 

                                            
14 Clearly, the exponential trend moving toward infinity is precisely an abstract situation, since the “finite” 
environment in which companies exist and operate would in any case provoke an initial change in the function’s 
concavity until its arrest.  
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points correspond with the intersections between the parabola and the bisector 𝐹(𝑋) = 𝑋, 
that is to say 𝑋(𝑡 + 1) = 𝑋(𝑡), which are 𝑋 = 0 (extinction equilibrium point) and 𝑋 = 𝐾 
(carrying capacity).  
 
 

Figure 6 - Logistic growth function 
 

 
 
 
Since the latter is a “natural equilibrium point”, the forces acting on it would be more easily 
compensated by endogenous automatic processes – for small deviations – which can be traced 
back to 𝑋 = 𝐾. This is because, in the logistic growth function, 𝐹(𝑋) > 𝑋 and 𝐹(𝑋) < 𝑋 are to 
the left and to the right of the equilibrium point respectively. Vice versa in the case of 𝑋 = 0, 
since any increase of the resources, whether spontaneous or stimulated, will develop an 
accelerated departure from this equilibrium point in the various successive time intervals, 
and will still tend towards carrying capacity.  
These general considerations should be further broken down by typing the growth functions. 
From a positive starting value, the intrinsic growth rate 𝑟 = 𝐺(0), we reach another 
intersection with the abscissae in the value 𝐾 > 0 (i.e. 𝐺(𝐾) = 0), that is to say the oft-
mentioned natural equilibrium point. If the function thus described is increasing and 
continuous – though not necessarily linear – the previous observations remain valid: 𝐹(𝑋) =
𝑋(1 + 𝐺(𝑋)) is in fact concave and unimodal and not particularly different from the parabola 

used for the general case. 
Nevertheless, in dealing with the population of enterprises within an economic system, we 
must have recourse to the specific growth function 𝐺(𝑋), since we have already had the 
opportunity to mention how the increase in the number of these enterprises is conditioned by 
the total number of enterprises insisting on the system, and above all by those that undertake 
the same commercial objective. For this reason, the population of enterprises will be 
described by a growth function with a maximum point in an intermediate value of that same 
population: this situation is called growth with depensation. (Allee effect) 
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Figure 7 - Growth with depensation function 
 

 
 
 
The attitude of the curve is always characterized by one single maximum – in compliance with 
the unimodality – however, it will go through a first phase of convexity for small values of 𝑋 
and a point of inflection that will make it concave as 𝑋 grows. Even here we notice two 
equilibrium points: the fixed extinction point in 𝑋 = 0 and the carrying capacity point in 𝑋 =
𝐾 > 0. This characteristic change of concavity assumes particular relevance in the effects of 
the credit crunch, as will be seen below. 
Beginning again from the equation [7], we set 𝐶(𝑡) > 0, with 𝐶(𝑡) being the number of 
companies that exit the market or go into default due to the reduction in leverage they are 
granted. The condition of equilibrium is described by 𝐹(𝑋(𝑡)) = 𝐶(𝑡). 

Let us now introduce the parameter 𝑆 into this discussion. This parameter highlights the 
banking system strategy that implements a reduction of credit to the system, in order to 
minimize its capital allocations and maximize its profits, even from non-commercial business 
(e.g. the purchase of sovereign bonds). In addition, we will also consider the coefficient 𝑎, 
which takes the degree of “aggressiveness” in the implementation of this credit crunch-
strategy into account. Thus, we will have 𝐶(𝑡) = 𝑎𝑆𝑋(𝑡). So, we will rewrite the equation [10] 
as follows: 

𝑋(𝑡 + 1) = 𝐹(𝑋(𝑡)) = 𝑋(𝑡)(1 + 𝛾 − 𝑎𝑆 − 𝜆𝑋(𝑡))       [11] 

The 𝐹(𝑋) function is now a parabola passing through the origin with the vertical line 𝑋 = (1 +
𝛾 − 𝑎𝑆)/(2𝜆) as its axis of symmetry. Setting 𝐹(𝑋) = 𝑋, the equilibrium points will be 𝑋0 = 0 
and 𝐾𝑆 = (𝛾 − 𝑎𝑆)/𝜆. From a natural equilibrium point with carrying capacity obtained by 
𝑆 = 0 (absence of credit crunch) in 𝐾 = 𝐾0 = 𝛾/𝜆, we can obtain different scenarios with the 
increase of 𝑆: 

- With 𝑎𝑆 < 𝛾, the 𝐾𝑆 equilibrium point remains positive and stable, whilst at the 𝑋0 = 0 
point, instability is noted. 

- Upon the additional increase of the parameter 𝑆, the value of the positive equilibrium 
point is reduced because 𝐾𝑆 is a decreasing function of 𝑆. 
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- If the level of 𝑆, that is, the level of the 𝑎 coefficient increases up to 𝑎𝑆 = 𝛾, an overlap 
of the two equilibrium points will be created. 

- An additional increase of 𝑆 will determine a bifurcation in which the 𝐾𝑆 equilibrium 
point will become negative and unstable; at the same time this will cause an attraction 
in the point 𝑋0. 

In other words, when 𝑎𝑆 exceeds the value of the parameter 𝛾 – that is, the enterprises’ 
‘demographic rate’ – the system seems to inexorably lead towards the (theoretical) extinction 
of the enterprise resource. 
Hence, let us assume that the banks have only the two extreme strategies available: 

a) 𝑎𝑆 > 𝛾 
b) 𝑎𝑆 < 𝛾 

The utility functions associated with each of these are in figure (8). 
 

Figure 8 
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As set out above, the banks’ pay-off will be θ > η (at least over the medium- to long-term); the 
companies’ pay-off will  be ξ > ν (always)15. What emerges is a game with a non-cooperative, 
dominant player (𝑍1 – the banks – who will decide the strategy), with only one win-win 
solution (figure 8) in choice b, which is reinforced by the application of the von Neumann-
Morgenstern rationality axioms16. 
 

Figure 9 
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To formalize the banks’ strategy for financing enterprises, particularly concerning the 
reduction of liquidity, we write 𝑄 = 𝑎𝑆𝐾𝑆, where 𝑄 indicates the net performance of banks in 
terms of profit and provisions relative to their credit activity:  

- if 𝑆 < 𝛾/𝑎, then 𝑄 = [𝑎𝑆(𝛾 − 𝑎𝑆)]/𝜆; 
- if 𝑆 > 𝛾/𝑎, then 𝑄 = 0. 

The best and most remunerative level of 𝑄, with full preservation of the bank-enterprise 
system’s stability, is obtained by 𝑆 = 𝛾/(2𝑎). 

                                            
15 Cf. Orton et al. (2015). 
16 Cf. Desogus & Casu (2020). 
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If, therefore, a greater incidence of the restrictive policy represented by 𝑎𝑆 offers greater 
advantages in the short-term, how the bank-enterprise system, having reached equilibrium, 
suffers a progressive depletion of the enterprise population and an increase in losses for the 
banks over the long-term (with 𝑆 > 𝛾/(2𝑎)) begins to take shape, until it determines 
unfavourable outcomes for 𝑆 = 𝛾/𝑎. If, consequently 𝑆𝑀𝑆𝑄 was the maximum level of 

sustainable credit crunch, the situation 𝑆 > 𝑆𝑀𝑆𝑄  would lead to an over-contraction, which is a 

concept very similar to overexploitation borrowed from the field of Bio-economics. 
As mentioned above, the growth function of the enterprise population is characterized by 
depensation. This phenomenon is described by the change of concavity of the function 𝐹. This 
creates complications in the presence of credit reduction activity that will bring about a new 
equilibrium, which we will call 𝑋𝑆 and which can be traceable between the equilibrium of the 
extinction point and the carrying capacity point 𝐾𝑆 (that is to say, 0 < 𝑋𝑆 < 𝐾𝑆). 𝑋𝑆 is also 
unstable and represents a junction between stock values: when 𝑋 < 𝑋𝑆 its evolution will tend 
towards extinction; with 𝑋 > 𝑋𝑆, the system is directed towards the equilibrium point 𝐾𝑆. 𝑋𝑆 is 
therefore the survival threshold: the value of 𝑆 in correspondence with the threshold 
establishes the bifurcation value, which will be indicated by 𝑆1. 
 

Figure 10 
 

 
 
If 𝑆 > 𝑆1, then, equilibrium will be established in 𝑋 = 0, with a survival threshold of 𝑋𝑆 > 0. 
Upon the further increase of 𝑆, one can observe a progressive approach of the two points of 
equilibrium. This has the effect of reducing the value of the stock at a stable equilibrium, 
which at the same time, creates greater vulnerability of the system, caused by the rise of the 
survival threshold, below which the population of enterprises will be heading towards 
extinction. If the credit contraction strategy 𝑆 becomes even more significant, we will be able 
to observe 𝑋𝑆 still growing, and 𝐾𝑆 shrinking, until 𝑋𝑆 and 𝐾𝑆 overlap and then cancel 
themselves out. This places us before another bifurcation, 𝑆2, which will lead to only one 
possible solution: the theoretical exhaustion of the enterprise resource. 
The measures adopted by the central banks, their monetary policy in general and the public 
injection of liquidity into the productive system were made necessary to avoid this “trap”, 
which undermines the survival of the entrepreneurial fabric, the stability of the banking 
system and of the entire economic system. Yet these measures should always necessarily be 
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implemented before the critical value of 𝑆2 has been reached: that is to say, before the stock 
𝑋(𝑡), which has fallen below the survival threshold, slips into the range of attraction of the 
equilibrium point of extinction. 
Actually, the phenomena analysed produce such extreme effects over a very long period 
during which there are no containment measures whatsoever. Moreover, the equilibrium 
point of extinction is asymptotic: or rather, there is an asymptote located at a distance from 
the extinction point equal to a radius 𝑝. This distance is primarily due to the presence in the 
population 𝑍2 of enterprises – especially the largest – able to make up for the lack of financial 
leverage with their own and endogenous means and resources. Furthermore, the factor  𝑥𝑖 =
 𝛼𝐾 + 𝛽𝑒𝑖 – formula [3] illustrated in the introduction – impedes the population of enterprises 
from plummeting to zero. This can be demonstrated with the relation Δ𝑥𝑖𝛥𝑝 = 𝑚, with 𝑚 
parametric: in other words, if the radius between the number 𝑋 of 𝑍2 and the extinction point 
is significantly shortened, the contribution of the 𝐾 (macro-economic) and 𝑒𝑖 (idiosyncratic) 
factors will proportionally counterbalance the result of the product leaving the value of 𝑚 
unchanged. This is the resilience of the super-system. Nevertheless, the point 𝑚 is still at a 
critical height and the entire system is labile. 
The instruments known as long term refinancing operations (LTRO) and the main refinancing 
operations (MRO) on a weekly or bimonthly basis (so-called ‘overnight’ loans), as well as 
‘quantitative easing’ – with a bridge, precisely, for banks – were intended to bring back and/or 
maintain the value of the stock 𝑋 above the survival threshold, reducing 𝑆 until 𝑋(𝑡) will 
(again) be higher than the threshold value 𝑋𝑆. This process will be successful when 𝑆 < 𝑆1 is 
achieved. The irreversibility described above, which induces regulators to act according to the 
precautionary principle, is called “hysteresis”. 
Beginning again from the equation [7], we can now see how central (banking) policy can 
intervene “upstream” to avoid the situation of the non-linear system discussed previously and 
referable to the “catastrophe theory”. This, therefore, applies even before the implementation 
of recovery measures, and where there is still 𝑆2 < 𝑆 < 𝑆1. 
Control over the credit crunch can be modelled by keeping under observation the levels of 
default or exit from the market by companies, caused by the reduction of their financial 
leverage, and making 𝐶(𝑡) equal to a constant 𝑐: 

𝑋(𝑡 + 1) = 𝐹(𝑋(𝑡)) = 𝑋(𝑡)(1 + 𝛾 − 𝜆𝑋(𝑡)) − 𝑐       [12] 

The parabola of the growth function will be shifted down by ℎ units. Solving the equilibrium 
equation 𝐹(𝑋) = 𝑋, or rather 𝜆𝑋² − 𝛾𝑋 + 𝑐 = 0, we will have two solutions: 

𝑋𝑐 =
𝑟−√𝛾²−4𝑐𝜆

2𝜆
     and     𝐾𝑐 =

𝑟+√𝛾²−4𝑐𝜆

2𝜆
       [13] 

Both solutions are real and positive for 𝑐 < 𝛾²/(4𝜆). At one not excessive level of enterprise 
population reduction 𝑐, there will therefore be two points of equilibrium: 𝑋𝑐 and 𝐾𝑐: the first 
is unstable and the second is stable. 
The instability of 𝑋𝑐 is motivated by the fact that, when the value of the stock 𝑋(𝑡) over a 
certain period 𝑡, is located in a right hand interval of 𝑋𝑐 – or rather, 𝑋(𝑡) will be slightly 
greater than 𝑋𝑐 – then in the next interval it will tend to move further away: being 𝐹(𝑋) > 𝑋 
to the right of 𝑋𝑐, so then 𝑋(𝑡 + 1) > 𝑋(𝑡). 
If, vice versa, 𝑋(𝑡) were to be slightly less than 𝑋𝑐, that is to say if it was in a left hand interval, 
since 𝐹(𝑋) < 𝑋 is to the left of 𝑋𝑐, then 𝑋(𝑡 + 1) < 𝑋(𝑡) will be the result, and here too, a 
further departure will be observed. 𝑋𝑐 is therefore also a survival threshold value, since if the 
value of the stock 𝑋(𝑡) were to, at a specific instant, become less at point 𝑋𝑐 – due to an 
external shock, that is to say an immediate and idiopathic restriction of the credit granted – 
the system would begin to move towards negative values and once again towards the 
(theoretical) extinction of the population of the enterprises within a certain ‘𝑡 + 𝑛’. On the 
other hand, if an unfavourable contraction, even though reducing the stock 𝑋(𝑡), were to not 
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cause it to fall below the point 𝑋𝑐, and hence 𝑋(𝑡) > 𝑋𝑐 , the system would be spontaneously 
attracted towards the stable equilibrium point 𝐾𝑐. 
Furthermore, since 𝐾𝑐 is in any case lower than the carrying capacity of the population of 
enterprises 𝐾 (equal to 𝛾/𝜆), it can be noted that a credit crunch, even if controlled, would 
take the system to a stable equilibrium value of the population of enterprises, less than that 
which would have been the case in the total absence of funding retention strategies. In this 
scenario, the two equilibrium points obviously depend on the height 𝑐: whose rise will show 
an increase in the value of 𝑋𝑐 and the decrease in the value of 𝐾𝑐. The system becomes more 
fragile, since as the survival threshold increases the natural equilibrium value decreases. In 
𝑐 = 𝛾2/(4𝜆) there is the overlap of the two points 𝑋𝑐 and 𝐾𝑐, and in these the parabola 
becomes tangent to the bisector. Once the value of 𝑐 has been surpassed, which is an 
additional point of bifurcation, we are again in a situation where the only final evolution of the 
model is extinction. 
 

Figure 11 
 

 
 
By activating similar forms of control, based on the identification of a loss share-threshold for 
individuals-enterprises, following a restrictive credit strategy by the banks – in the absence of 
structural or exogenous crises – a stable equilibrium of the system is achieved, albeit with a 
density lower than the carrying capacity of the population observed in the absence of 
contractions of financial leverage. This is on the condition that the stock 𝑋 does not fall below 
a certain threshold 𝑋𝑐, that is, that the height 𝑐 does not pass the bifurcation point. 
 
 

4. Is there therefore an optimal minimum level of disbursed financial leverage? A 
second dynamic model 

 
Wanting to take another step forward – to offer another point of view – we will now 
reconsider the introduction – expanding it slightly – for which, at adequate levels of credit 
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leverage granted, the population of companies will grow by 
𝑑𝑍2

𝑑𝑡
= 𝐺𝑍2 with 𝐺 > 0. Vice versa – 

taking the abstraction to an extreme – if the population of companies were to disappear as a 
result of an unsustainable financial squeeze, the banks would go into default. So if 𝑍2 = 0, 
𝑑𝑍1

𝑑𝑡
= −𝐻𝑍1 with 𝐻 > 0. 

The number of (positive) transactions between banks and businesses is clearly proportional 
to the product of their populations that are performing. We have said that a credit retention 
strategy produces, in an immediate future17, a positive effect on banks’ balance sheets – 
namely 𝛼𝑍2𝑍1 – whilst, instead, this burdens enterprises with an outcome on the number, 
which is expressed by the relation −𝛽𝑍2𝑍1. Even 𝛼 and 𝛽 are positive constants and measure 
the immediate result of the interaction – in terms of credit disbursed/received – for the two 
populations. 
 As a result of these assumptions, the previous equations will undergo a formal development: 

𝑑𝑍2

𝑑𝑡
= 𝐺𝑍2 −  𝛽𝑍2𝑍1     and      

𝑑𝑍1

𝑑𝑡
= −𝐻𝑍1 +  𝛼𝑍2𝑍1       [14] 

The objective is now – once the positive starting values have been arbitrarily set (at the time 
𝑡) for the two populations 𝑍1 and 𝑍2 – to identify and define the qualitative behaviour of the 
trajectories of the system. 18 
Solving 

{
𝑍2(𝐺 − 𝛽𝑍1) = 0   

𝑍1(−𝐻 + 𝛼𝑍2) = 0
       [15] 

We will find the critical points 𝐴(0, 0) and 𝐵 (
𝐻

𝛼
,

𝐺

𝛽
) 

Near point 𝐴 the corresponding linear system will be: 
𝑑

𝑑𝑡
(

𝑍2

𝑍1
) =  (

𝐺   0

0 −𝐻
) (

𝑍2

𝑍1
)       [16] 

With the eigenvalues and eigenvectors: 

𝜌1 = 𝐺,            𝜅1 = (
1

0
) 

𝜌2 = −𝐻, 𝜅2 = (
0

1
) 

And solution: 

(
𝑍2

𝑍1
) = 𝐶1 (

1

0
) 𝑒𝐺𝑡 + 𝐶2 (

0

1
) 𝑒−𝐻𝑡       [17] 

From which it may be seen how the point 𝐴(0, 0) – the origin – is a saddle point, and therefore 
unstable: the entry is an ordinate and all the different trajectories move away from the critical 
point. 
In the same way, we shall proceed with an observation of the surroundings of the point 𝐵, 
setting  

𝑍2 = (
𝐻

𝛼
) + 𝑤     and     𝑍1 = (

𝐺

𝛽
) + 𝑣       [18] 

Therefore 
𝑑

𝑑𝑡
(

𝑤

𝑣
) =  (

     0   −𝛽𝐻/𝛼

𝛼𝐺/𝛽     0   
) (

𝑤

𝑣
)       [19] 

                                            
17 At least as long as the client enterprises are able to remain in the market and properly repay their quotas of 
the borrowed capital and the related finance charges. 
18 An (extensive) application of the Lotka-Volterra equations is proposed. Ex multis, cf. Hernàndez-Bermejo & 
Fairén (1997), Costanzini (2009). 
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With eigenvalues (imaginary) 𝜌1/2 = ±𝑖√𝐺𝐻, which demonstrate the existence of a stable 

centre in 𝐵 (
𝐻

𝛼
,

𝐺

𝛽
). The system’s trajectories will be given by: 

𝑑

𝑑𝑡
=

𝑑𝑣/𝑑𝑡

𝑑𝑤/𝑑𝑡
= −

(
𝛼𝐺
𝛽

) 𝑤

(
𝛽𝐻
𝛼

) 𝑣
       [20] 

or even: 
𝛼2𝐺𝑤 𝑑𝑤 + 𝛽2𝐻𝑣 𝑑𝑣 = 0       [21] 

From which: 
𝛼2𝐺𝑤2 + 𝛽2𝐻𝑣2 = 𝑘       [22] 

With 𝑘 constant of integration (not negative).  
The solutions can be formalized in: 

𝑤 =
𝐻

𝛼
𝐽 cos (√(𝐺𝐻)𝑡 + 𝜓)      and      𝑣 =

𝐺

𝛽
√

𝐻

𝐺
𝐽 sin (√(𝐺𝐻)𝑡 + 𝜓)       [23] 

where the constants 𝐽 and 𝜓 are determined by the initial conditions. Replacing in [18], we 
get: 

𝑍2 =
𝐻

𝛼
+

𝐻

𝛼
𝐽 cos (√(𝐺𝐻)𝑡 + 𝜓)      𝑎𝑛𝑑     𝑍1 =

𝐺

𝛽
+

𝐺

𝛽
√

𝐻

𝐺
𝐽 sin (√(𝐺𝐻)𝑡 + 𝜓)       [24] 

The trajectories of the corresponding linear system are therefore almost elliptical and move 
anticlockwise. The equations [24] offer a good approximation of the representation. 
Let us return to the non-linear system, reducing it to the equation: 

𝑑𝑍1

𝑑𝑍2
=

𝑑𝑍1/𝑑𝑡

𝑑𝑍2/𝑑𝑡
= −

𝑍1(−𝐻 + 𝛼𝑍2)

𝑍2(𝐺 − 𝛽𝑍1)
       [25] 

Which, by separating it, leads to the solution: 
𝐺 ln(𝑍1) − 𝛽𝑍1 + 𝐻 ln(𝑍2) − 𝛼𝑍2 = 𝑞       [26] 

Setting 𝑞 – which is also a constant of integration – the graph of the equation is still a curve 

surrounding the critical point 𝐵 (
𝐻

𝛼
,

𝐺

𝛽
), which is therefore a centre for the non-linear system 

as well. 
 

Figure 12 - Phase representation of the nonlinear system 
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Depending on the initial conditions, the trajectories on the stable critical point may show 
slight variations in the abscissa (𝑍2) and in the ordinate (𝑍1), or they may be more 
pronounced and have a greater difference compared to an ellipse. Finally, since 𝑍2 and 𝑍1 are 
periodic functions of 𝑡, a non-overlapping oscillatory movement will follow: the curves will 
intersect at levels of leverage sufficient to support the financial, productive and economic 
health of enterprises such that their systemic confidence and performing presence in the 
market can be increased. At these points, banks will have the convenience of restricting credit 
volumes to increase their short-term performance, producing new mortality in the 
entrepreneurial fabric and an increase in their non-performing loans in the system, which will 
lead them again towards a greater expansion of lending and the reactivation of the cycles. 
We reiterate that this model has greater validity for banks that operate mainly in the credit 
market, since the simultaneous diversification of assets by banks would mitigate the cause-
effect mechanism of the proposed model. 
 
 
Position conclusions 
 
Therefore, the preservation of the bank-enterprise relationship seems necessary, for the 
maintenance of the macrosystem. In particular, as far as we are concerned, the stabilization of 
the levels of leverage in the productive and entrepreneurial sectors should be consistent with 
the dynamic models outlined above. At the very least, the recursive phases highlighted above 
should also be guaranteed through regulatory standardization. This becomes more significant 
in fragile and/or partially compromised economic scenarios or when unfavourable economic 
conditions prevail. 
Getting back to the Italian case, specifically to the measures enacted to support the economy 
made necessary by the current SARS-COVID-19 emergency, we will be analysing the lines of 
intervention dictated by the Italian government and we will briefly see how these are 
activated with the main objective of keeping the bank-enterprise system in working order.  
It should first of all be pointed out that – in all evidence – the 2020 economic crisis has arisen 
from exogenous elements. Therefore, it was not caused by internal pathologies within the 
same economy (as was true, for example, of the 2009-2011 crisis). This consideration will 
assume particular importance during the management of the resolution of the current crisis. 
This must be undertaken first to ensure temporary compensation for the sudden cessation of 
productive activities, and therefore allaying concerns about restoring economic and financial 
features that have been damaged. The liquidity so far allocated coming to Euro 350 billion 
(leverage on nominal € 25 billion) plus Euro 40019 billion (again, as a result of leverage), was 
not directly injected into the production system (or households), with the “helicopter money” 
rationale or through other forms however direct they may have been. Instead, the 
intervention of the Italian government was aimed at strengthening the public guarantee 
funds, leaving the role of financial intermediation by the banks unchanged and at the same 
time encouraging the latter to undertake quantitative expansion of credit disbursed. 
Indeed, both recent Decree-Laws, No. 18 and No. 23 of 2020, expressly addressed all 
resources to direct public guarantees, immediately enforceable and with zero weighting on 
provisions, as well as to reinsurance for the world of credit guarantee consortia, with free 
access and coverage up to 100% (for small loans), and in any case between 80% and 90% for 
most financing operations.   

                                            
19 Our intention here is not to discuss the merits of macroeconomic arguments for stability, public deficit or 
European Community loan instruments – bonds or no bonds – so that the State can raise these resources. 
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These measures - assessed here only for the aspects pertinent to this paper - should be able to 
impede a further credit crunch, which would certainly have manifested itself in the face of the 
generalised worsening of creditworthiness brought about by the lockdown, while avoiding 
critical developments in the tendency towards default by the populations of enterprises and 
banks in the nation. 
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Appendix 

 

Dataset 1: Loans to enterprises in Italy, in million euros 

Feb-12 1,867,069 Feb-14 1,748,482 Feb-16 1,653,726 Feb-18 1,538,125 

Mar-12 1,843,099 Mar-14 1,741,682 Mar-16 1,648,836 Mar-18 1,528,030 

Apr-12 1,855,380 Apr-14 1,734,242 Apr-16 1,638,352 Apr-18 1,528,992 

May-12 1,848,450 May-14 1,719,438 May-16 1,650,041 May-18 1,531,149 

Jun-12 1,839,294 Jun-14 1,730,636 Jun-16 1,652,764 Jun-18 1,468,328 

Jul-12 1,842,289 Jul-14 1,737,299 Jul-16 1,644,173 Jul-18 1,471,657 

Aug-12 1,824,729 Aug-14 1,714,682 Aug-16 1,637,576 Aug-18 1,453,087 

Sep-12 1,814,339 Sep-14 1,723,485 Sep-16 1,635,688 Sep-18 1,449,988 

Oct-12 1,816,006 Oct-14 1,714,305 Oct-16 1,634,588 Oct-18 1,445,756 

Nov-12 1,822,061 Nov-14 1,709,791 Nov-16 1,639,756 Nov-18 1,452,218 

Dec-12 1,803,779 Dec-14 1,690,082 Dec-16 1,618,884 Dec-18 1,412,341 

Jan-13 1,807,279 Jan-15 1,694,068 Jan-17 1,627,127 Jan-19 1,412,799 

Feb-13 1,804,572 Feb-15 1,686,081 Feb-17 1,626,021 Feb-19 1,407,968 

Mar-13 1,784,326 Mar-15 1,694,929 Mar-17 1,622,248 Mar-19 1,383,853 

Apr-13 1,779,044 Apr-15 1,688,135 Apr-17 1,610,564 Apr-19 1,389,698 

May-13 1,771,135 May-15 1,679,991 May-17 1,614,943 May-19 1,385,884 

Jun-13 1,757,391 Jun-15 1,694,540 Jun-17 1,591,435 Jun-19 1,370,106 

Jul-13 1,761,553 Jul-15 1,693,195 Jul-17 1,554,869 Jul-19 1,374,303 

Aug-13 1,737,363 Aug-15 1,675,366 Aug-17 1,534,324 Aug-19 1,349,538 

Sep-13 1,737,088 Sep-15 1,679,762 Sep-17 1,524,810 Sep-19 1,346,075 

Oct-13 1,725,214 Oct-15 1,659,496 Oct-17 1,527,558 Oct-19 1,337,474 

Nov-13 1,712,062 Nov-15 1,680,464 Nov-17 1,528,311 Nov-19 1,334,656 

Dec-13 1,706,800 Dec-15 1,659,189 Dec-17 1,531,909 Dec-19 1,312,601 

Jan-14 1,755,443 Jan-16 1,656,962 Jan-18 1,531,414 Jan-20 1,325,769 

 

 

Dataset 2: non performing loans in Italy, in million euros 

Mar-12 80,372 Mar-14 125,350 Mar-16 147,868 Mar-18 125,784 
Jun-12 85,174 Jun-14 130,275 Jun-16 149,683 Jun-18 99,454 
Sep-12 88,628 Sep-14 133,524 Sep-16 151,241 Sep-18 92,281 
Dec-12 93,420 Dec-14 136,323 Dec-16 154,034 Dec-18 73,545 
Mar-13 97,330 Mar-15 140,097 Mar-17 150,485 Mar-19 67,456 
Jun-13 103,642 Jun-15 145,662 Jun-17 150,251 Jun-19 66,077 
Sep-13 108,895 Sep-15 149,286 Sep-17 133,973 Sep-19 62,205 
Dec-13 117,511 Dec-15 151,423 Dec-17 128,586   
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Dataset 3: total number of enterprises in Italy 

Year  2012  2013  2014  2015  2016  2017  2018  

B: extraction of minerals 

from quarries and mines  2,451 2,336 2,257 2,186 2,250 2,317 2,332 

C: manufacturing  417,306 407,344 396,422 389,317 399,458 404,529 406,508 

D: supply of electricity, gas, 

steam and air conditioning  8,926 10,169 10,459 10,775 10,015 10,041 10,056 

E: supply of water, sewerage, 

waste management and 

environmental remediation 

services  8,967 9,121 9,146 9,231 9,060 9,230 9,301 

F: construction  572,412 549,846 529,103 511,405 534,824 537,348 537,853 

G: wholesale and retail trade, 

repair of motor vehicles and 

motorcycles  1,163,413 1,153,640 1,123,134 1,105,227 1,128,117 1,129,702 1,130,596 

H: transport and storage  131,755 129,865 125,688 123,625 127,651 127,817 128,172 

I: accommodation and food 

service businesses  307,878 313,207 312,013 315,464 312,000 311,478 312,009 

J: information and 

communications services  97,280 95,989 96,997 98,381 96,933 96,915 97,079 

K: financial and insurance 

service businesses  91,434 93,031 95,209 96,173 93,199 93,341 93,394 

L: real estate businesses  235,434 243,564 239,134 238,273 237,137 237,094 237,067 

M: professional, scientific and 

technical businesses  710,017 691,700 705,895 714,934 700,468 700,308 700,406 

N: rental and travel agencies, 
business support services  143,770 139,362 139,898 139,595 139,959 140,415 140,724 

P: education  26,890 27,677 29,088 29,566 28,360 28,256 28,304 

Q: healthcare and social services  259,400 261,056 277,295 285,231 269,170 269,050 269,191 

R: arts, sports, entertainment 

and amusement businesses  63,054 62,704 64,169 65,022 63,165 63,350 63,404 

S: other service businesses  202,065 199,902 203,180 203,680 200,831 200,794 200,857 

TOTAL  4,442,452 4,390,513 4,359,087 4,338,085 4,352,597 4,361,985 4,367,253 
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Dataset 4: number of micro enterprises in Italy 
 

 Year  2012  2013  2014  2015  2016  2017  2018  

B: extraction of minerals from 
quarries and mines  1,907  1,850  1,775  1,712  1,796  1,795  1,795  

C: manufacturing  345,293  338,015  328,486  321,837  330,613  330,526  330,459  

D: supply of electricity, gas, 

steam and air conditioning  8,380  9,610  9,916  10,205  9,448  9,445  9,443  

E: supply of water, sewerage, 

waste management and 

environmental remediation 

services  6,485  6,688  6,748  6,816  6,628  6,626  6,625  

F: construction  548,709  528,592  509,648  492,388  515,477  515,341  515,237  

G: wholesale and retail trade, 

repair of motor vehicles and 

motorcycles  1,124,546  1,116,087  1,086,631  1,068,659  1,089,768  1,089,481  1,089,262  

H: transport and storage  119,126  117,430  113,241  110,756  114,173  114,143  114,120  

I: accommodation and food 

service businesses  288,119  294,007  292,996  295,706  290,253  290,177  290,119  

J: information and 

communications services  91,274  89,895  91,020  92,279  90,353  90,329  90,311  

K: financial and insurance 
service businesses  88,998  90,637  92,831  93,799  90,799  90,775  90,757  

L: real estate businesses  234,738  242,874  238,492  237,637  236,437  236,374  236,327  

M: professional, scientific and 

technical businesses  702,053  683,778  698,154  707,020  691,902  691,720  691,581  

N: rental and travel agencies, 

business support services  132,452  128,082  128,721  128,394  128,327  128,294  128,268  

P: education  25,239  25,957  27,351  27,781  26,359  26,352  26,347  

Q: healthcare and social 

services  253,160  254,655  270,894  278,646  262,123  262,054  262,001  

R: arts, sports, entertainment 

and amusement businesses  60,658  60,382  62,001  63,011  60,997  60,981  60,969  

S: other service businesses  198,593  196,542  199,755  200,185  197,103  197,051  197,011  

TOTAL  4,229,730  4,185,081  4,158,660  4,136,831  4,142,556  4,141,465  4,140,633  
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Abstract

We show how to construct a generalised iterated function system whose graph is
the attractor, a fractal set, of some continuous function which interpolates a given
set of data. Moreover, Rakotch contractions and vertical scaling factors as (continu-
ous) ‘contraction functions’ are used in order to obtain generalised fractal interpolation
functions with extensive practical applications, including data fitting and approxima-
tion of functions. A special generalised fractal interpolation function is introduced
as an explicit illustrative example to show the effectiveness of the proposed method
as compared to other existing methods. In particular, fractal interpolation functions
which are widely presented in the literature can be obtained as particular cases of our
construction.
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1 Introduction

The concept of fractal interpolation functions (FIFs) was introduced by Barnsley [1] on the
basis of the theory of iterated function systems (IFSs). Barnsley defined a fractal interpo-
lation function (FIF) in 1986 and presented a construction of fractal functions by fractal
interpolation. In the developments of theory of FIFs, many researchers have generalized the
notion of FIFs in different ways. The fractal interpolation functions have been discussed
in detail in the literature (see [1]-[10]). Fractal interpolation functions have become a pow-
erful tool for modeling many natural objects and have wide applications in mathematics
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and several other areas of applied sciences. For example, the fractal interpolation functions
have been widely used in approximation theory, image compression, computer graphics and
modeling of natural functions (or surfaces) such as rocks, metals, terrains and so on. As
we know, a fractal interpolation function is generated by an IFS that consists of a finite
set of some continuous functions on a complete metric space. Vertical scaling factors in
the continuous functions have a decisive influence on the shape of the corresponding FIF
because the vertical scaling factors uniquely determine the corresponding FIF provided that
the interpolation points are prescribed in advance (see [12]).

How to construct fractal functions (rough functions) and analyse their complexity has
become one of the most important topics in fractals (see [10]). The graph of a fractal inter-
polation function is an attractor of some iterated function system (see [1]). The concept of
iterated function system was introduced as a natural generalization of the well-known Ba-
nach contraction principle (see [1], see [12], cf. [10]). Iterated function systems have become
powerful tools for construction and analysis of new fractal interpolation functions. In order
to ensure more flexibility in modeling natural shapes and phenomena or in image processing,
researchers proposed many types of fractal interpolation functions by using iterated function
systems (see [1], [12], [2], [10]).

The connectivity of attractors of iterated function systems is very important in the con-
struction of fractal interpolation functions. The graphs of linear one variable fractal inter-
polation functions are always continuous functions. In usual approaches, the existence of
linear FIFs follows from Banach’s fixed point theorem (see [1]). Furthermore, in almost all
the papers, the various types of FIFs are limited within the cases of constant vertical scaling
factors and Banach’s fixed point theorem. In 2011, to get the FIFs with more flexibility
and diversity in a more general sense, Wang and Fan introduced a natural generalization
of Barnsley’s affine fractal interpolation function by using special function vertical scaling
factors and Banach’s fixed point theorem (see [?]). In order to construct new iterated func-
tion systems and fractal interpolation functions, one can use the well-known fixed point
results obtained in the fixed point theory (see [?], [5], [9], [10]). As far as we know, the first
significant generalization of Banach’s principle was obtained by Rakotch in 1962 (see [4],
p.124).

In 2017, Ri presented a method to generate generalized FIFs by using the Rakotch fixed
point theorem ([7]) instead of the Banach fixed point theorem in certain concrete case (see
[10]). However, results of [10] do not directly apply to the general case which often occurs
in practical applications. In fact, in general case, the methods of proof of results in [10] fail
because generalized transformations can involve special function vertical scaling factors that
are not constant vertical scaling factors. The results of [?] and [10] inspire us to find possible
vertical scaling factors (not necessarily constant vertical scaling factors) and contractions
(not necessarily Banach contractions) for the existence of generalized FIFs. In this paper,
in order to obtain generalized fractal interpolation functions, we use Rakotch contractions
and special function vertical scaling factors. Dealing with generalized fractal interpolation
functions is better than the one provided by [10]. In particular, we give an explicit illustrative
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example to demonstrate the effectiveness of obtained results.
This paper is organized as follows. In Section 2 we recall some results needed in con-

structing general FIFs. In Section 3 we introduce a new type of IFSs that will be used in
our discussion for a special class of FIFs with function vertical scaling factors. In Section
4 we give a generalized FIF with special function vertical scaling factors as the fixed point
of certain Read-Bajraktarević operator. In Section 5 we ensure that a generalized IFS with
special function vertical scaling factors has a unique invariant set. In Section 6 we give an
explicit illustrative example to demonstrate the effectiveness of the preceding theory. Finally,
in Section 7 we draw our conclusions.

2 Preparatory facts

In this section, we describe some basic notions and theorems on fixed point theory. The
following results will be the key in the proof of our main results.

Definition 2.1. (see [?], p.100, see [7], see [4], p.144) (1) If for some function ϕ : (0,+∞)→
(0,+∞) and a self-map f of a metric space (X, d), we have

∀x,y∈X d(f(x), f(y)) ≤ ϕ(d(x, y)),

then we say that f is a ϕ-contraction. (2) If f is a ϕ-contraction for some function ϕ :

(0,+∞) → (0,+∞) such that for any t > 0, α(t) := ϕ(t)
t
< 1 and the function (0,+∞) 3

t→ ϕ(t)
t

is non-increasing, then we call such a function a Rakotch contraction.

Remark 2.2. (see [4], p.144, diagram) Each Banach contraction is a Rakotch contraction,
since a map f : X → X is a Banach contraction iff it is a ϕ-contraction for a function
ϕ(t) = αt, for some 0 ≤ α < 1.

Theorem 2.3. (see [7], cf. [?], cf. [5], cf. [4]) (1) Let X be a complete metric space and
f : X → X be a Rakotch contraction. Then there is a unique fixed point k ∈ X of f , and
for each x ∈ X,

lim
n→+∞

fn(x) = k.

(2) Let X be a complete metric space and {X; f1, · · · , fN} be an iterated function system
consisting of Rakotch contractions. Then there is a unique non-empty compact set K ⊂ X
such that

K =
N⋃
i=1

fi(K).

Now we describe some basic results on fractal interpolation theory. Let N be a positive
integer greater than one and I := [x0, xN ] ⊂ R. Let a set of data points {(xi, yi) ∈ I×R : i =
0, 1, 2, · · · , N} be given, where {x0, x1, · · · , xN} is a partition of I (i.e., x0 < x1 < x2 < · · · <

3

153



xN) and y0, y1, · · · , yN are given real numbers. Set Ii := [xi−1, xi] ⊂ I and let li : I → Ii for
i = 1, 2, · · · , N be contractive homeomorphisms such that

li(x0) = xi−1, li(xN) = xi,

|li(x′)− li(x′′)| ≤ λ|x′ − x′′| whenever x′, x′′ ∈ I

for some 0 ≤ λ < 1. Furthermore, let mappings Fi : I × R → R be continuous with, for
some k ≥ 0 and 0 ≤ α < 1,

Fi(x0, y0) = yi−1, Fi(xN , yN) = yi.

|Fi(x′, y′)− Fi(x′′, y′′)| ≤ k|x′ − x′′|+ α|y′ − y′′|

for all x′, x′ ∈ I, y′, y′′ ∈ R, and i = 1, 2, · · · , N .
Now define functions wi : I × R→ I × R for i = 1, 2, · · · , N by

wi := (li(x), Fi(x, y)).

Barnsley presented the following famous result.

Theorem 2.4. (cf. [1], p.306) The IFS{I × R, wi : i = 1, 2, · · · , N} defined above has a
unique nonempty compact set G ⊂ R2 such that

G =
N⋃
i=1

wi(G).

Then G is the graph of a continuous function f : I → R which obeys

f(xi) = yi for i = 0, 1, · · · , N.

The function f whose graph is the attractor of an IFS is called a fractal interpolation
function (FIF) corresponding to the data {(xi, yi) : i = 0, 1, · · · , N} (cf. [1], p.306).

Remark 2.5. In accordance with the idea of Barnsley, researchers proposed many types of
FIFs. In [1], [12] and [10],

li(x) :=
xi − xi−1
xN − x0

x+
xNxi−1 − x0xi

xN − x0
.

(1) In [1], [12] and [2], the maps wi(x, y) are chosen so that functions Fi(x, y) are Banach
contractions with respect to the second variable.
In the affine fractal interpolation function (cf. [1], p.308),

Fi(x, y) := cix+ diy + fi,
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where |di| < 1, and in the fractal interpolation function with function vertical scaling factors
(see [?], see [12], p.3-4, cf. [2]),

Fi(x, y) := di(x)y + qi(x),

where supx∈I |di(x)| < 1. (2) In [10], one type of fractal interpolation functions is considered,
where the maps wi(x, y) are chosen so that functions Fi(x, y) are Rakotch contractions with
respect to the second variable. In the nonlinear fractal interpolation function (see [10]),

Fi(x, y) := cix+ si(y) + fi,

where si is a Rakotch contraction.

3 A certain generalised IFS

In this section, we introduce a new type of IFSs that will be used in our discussion for a
special class of FIFs with function vertical scaling factors. Barnsley’s functional condition for
existence of a fractal interpolation function can be replaced by another functional conditions
(see [10]). In order to obtain a new generalized fractal interpolation function, we use Rakotch
contractions and special function vertical scaling factors in the construction of a generalized
IFS (cf. [10], cf. [12]).

Let N be a positive integer greater than one and I := [x0, xN ] ⊂ R. We will work in
the complete metric space I × R, with the Euclidean metric d0. Let a set of data points
{(xi, yi) ∈ I × R : i = 0, 1, 2, · · · , N} be given, where x0 < x1 < x2 < · · · < xN and
y0, y1, y2, · · · , yN ∈ R. Set Ii := [xi−1, xi] ⊂ I and define contractive homeomorphisms
li : I → Ii by

li(x) := aix+ ei,

where for all i = 1, 2, · · · , N , the real numbers ai, bi are chosen to ensure that li(I) = Ii. Let
ϕ : (0,+∞) → (0,+∞) be a non-decreasing continuous function such that for any t > 0,

α(t) := ϕ(t)
t
< 1 and the function (0,+∞) 3 t→ ϕ(t)

t
is non-increasing. Let di : I → R be a

continuously differentiable function such that

max
x∈I
|di(x)| ≤ 1.

Then by the differential mean value theorem and the existence theorem of maximum value
and minimum value of continuous function, we can see that for some Ldi > 0,

|di(x′)− di(x′′)| ≤ Ldi |x′ − x′′|,

where x′, x′′ ∈ I. Hence di is Lipschitz function defined on I satisfying maxx∈I |di(x)| ≤ 1.
Consider an IFS of the form {I × R;wi, i = 1, 2, · · · , N} in which the maps are generalized
transformations of the special structure

wi

(
x
y

)
=

(
li(x)

Fi(x, y)

)
=

(
aix+ ei

cix+ di(x)si(y) + fi

)
,
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where the transformations are constrained by the data according to

wi

(
x0
y0

)
=

(
xi−1
yi−1

)
, wi

(
xN
yN

)
=

(
xi
yi

)
for i = 1, 2, · · · , N , and si are some Rakotch contractions (with the same function ϕ). Then
for all (x, y′), (x, y′′) ∈ I × R,

|Fi(x, y′)− Fi(x, y′′)| = |di(x)||si(y′)− si(y′′)|
≤ |si(y′)− si(y′′)| ≤ ϕ(|y′ − y′′|).

That is, each wi(x, y) is chosen so that function Fi(x, y) is Rakotch contraction with
respect to the second variable. Also, analytically, we obtain (compare with ai, ei, ci, fi of
[10]).

ai =
xi − xi−1
xN − x0

,

ei =
xNxi−1 − x0xi

xN − x0

ci =
yi − yi−1
xN − x0

− di(xN)si(yN)− di(x0)si(y0)
xN − x0

,

fi =
xNyi−1 − x0yi
xN − x0

− xNdi(x0)si(y0)− x0di(xN)si(yN)

xN − x0
.

Remark 3.1. 1) Our bivariate function di(x)si(y) is a generalization of bivariate function
di(x)y in the fractal interpolation function with function vertical scaling factors (see [?],
see [12], p.3-4, cf. [2]). In fact, in the case when 0 < maxx∈I |di(x)| < 1 (see [12], p.3),
obviously,

di(x)y =
di(x)

maxx∈I |di(x)|
max
x∈I
|di(x)|y.

Let si(y) := maxx∈I |di(x)|y and d∗i (x) := di(x)
maxx∈I |di(x)|

. Then di(x)y = d∗i (x)si(y), maxx∈I |d∗i (x)| =
1 and si is a Banach (or Rakotch) contraction.

2) Our functional condition maxx∈I |di(x)| ≤ 1 is the essential condition to show the
difference between Banach contractibility of Fi(·, y) and Rakotch contractibility of Fi(·, y)
(compare with [12]). In fact, since ϕ(t) < t for any t > 0,

|Fi(x, y′)− Fi(x, y′′)| = |di(x)||si(y′)− si(y′′)|
≤ max

x∈I
|di(x)||si(y′)− si(y′′)|

≤ max
x∈I
|di(x)|ϕ(|y′ − y′′|)

≤ max
x∈I
|di(x)||y′ − y′′|,
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where (x, y′), (x, y′′) ∈ R2.
Hence, if maxx∈I |di(x)| < 1, as can be seen, notwithstanding each si is a Rakotch contraction
that is not Banach contraction, each Fi is Banach contraction with respect to the second
variable because

|Fi(x, y′)− Fi(x, y′′)| ≤ max
x∈I
|di(x)||y′ − y′′|.

On the other hand, if maxx∈I |di(x)| = 1, then we can conclude that each Fi is Rakotch
contraction (that is not Banach contraction) with respect to the second variable whenever
each si is a Rakotch contraction (that is not Banach contraction) because

|Fi(x, y′)− Fi(x, y′′)| ≤ max
x∈I
|di(x)|ϕ(|y′ − y′′|).

4 Fixed point of a certain operator

In this section, we introduce a generalized FIF with special function vertical scaling factors
as the fixed point of certain Read-Bajraktarević operator (see [6]). By using Rakotch fixed
point theorem, we show that the graph of a generalized FIF with special function vertical
scaling factors is the invariant set of some generalized IFS.

Denote by C(I) the set of continuous functions f : I = [x0, xN ]→ R. Let C∗(I) ⊂ C(I)
denote the set of continuous functions f : I → R such that f(x0) = y0 and f(xN) = yN , that
is,

C∗(I) := {f ∈ C(I) : f(x0) = y0, f(xN) = yN}.

Let C∗∗(I) ⊂ C∗(I) ⊂ C(I) be the set of continuous functions that pass through the given
data points {(xi, yi) ∈ I × R : i = 0, 1, 2, . . . , N}, that is,

C∗∗(I) := {f ∈ C∗(I) : f(xi) = yi, i = 0, 1, · · · , N}.

Define a metric dC(I) on C(I) by

dC(I)(g, h) := max
x∈[x0,xN ]

|g(x)− h(x)|

for all g, h ∈ C(I). Then (C(I), dC(I)), (C∗(I), dC(I)) and (C∗∗(I), dC(I)) are complete metric
spaces. For all f ∈ C∗(I), define a mapping T : C∗(I)→ C(I) by

Tf(x) : = Fi(l
−1
i (x), f(l−1i (x)))

= cil
−1
i (x) + di(l

−1
i (x))si(f(l−1i (x))) + fi

for x ∈ [xi−1, xi] and i = 1, 2, · · · , N . Obviously, T is a form of Read-Bajraktarević operator
as defined in [6].

Lemma 4.1. Tf ∈ C∗∗(I) for all f ∈ C∗(I). That is, T : C∗(I) → C∗∗(I) and T n :
C∗∗(I)→ C∗∗(I) for all n ≥ 2.
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Proof. Since

wi

(
x0
y0

)
=

(
xi−1
yi−1

)
, wi

(
xN
yN

)
=

(
xi
yi

)
for i = 1, 2, · · · , N , we obtain li(x0) = xi−1, li(xN) = xi, l

−1
i (xi−1) = x0, l

−1
i (xi) = xN ,

Fi(x0, y0) = yi−1 and Fi(xN , yN) = yi for i = 1, 2, · · · , N . Hence if xi ∈ [xi−1, xi] for
i = 1, 2, · · · , N , then since f ∈ C∗(I), we obtain

Tf(xi) = Fi(l
−1
i (xi), f(l−1i (xi)))

= cil
−1
i (xi) + di(l

−1
i (xi))si(f(l−1i (xi))) + fi

= cixN + di(xN)si(f(xN)) + fi

= Fi(xN , f(xN)) = Fi(xN , yN) = yi

and if xi ∈ [xi, xi+1] for i = 0, 1, 2, · · · , N − 1, then since f ∈ C∗(I), we obtain

Tf(xi) = Fi+1(l
−1
i+1(xi), f(l−1i+1(xi)))

= ci+1l
−1
i+1(xi) + di+1(l

−1
i+1(xi))si+1(f(l−1i+1(xi))) + fi+1

= ci+1x0 + di+1(x0)si+1(f(x0)) + fi+1

= Fi+1(x0, f(x0)) = Fi+1(x0, y0) = yi.

So f(xi) = yi for all i = 0, 1, 2, · · · , N and Tf(x) is continuous at each of the points
x1, x2, · · · , xN−1. By definition of the mapping T , Tf(x) is continuous on the interval
[xi−1, xi] for all i = 1, 2, · · · , N . Hence Tf ∈ C∗∗(I) and T n : C∗∗(I) → C∗∗(I) for all
n ≥ 2.

Using Lemma 4.1 and the technique introduced in [10], we can obtain the following
Theorem that will be used in our discussion for a special class of FIFs with function vertical
scaling factors.

Theorem 4.2. Let N be a positive integer greater than one. Let {I×R;wi, i = 1, 2, · · · , N}
denote the IFS defined above, associated with the set of data

{(xi, yi) : i = 0, 1, · · · , N}.

Then the operator T is a Rakotch contraction (considered as a map T : C∗(I) → C∗(I)).
Hence there is a unique continuous function f : I → R which is a fixed point of T . In
particular, f(xi) = yi for i = 0, 1, · · · , N . Moreover, the graph G of f is invariant with
respect to {I × R;w1, · · · , wN}, i.e.,

G =
N⋃
i=1

wi(G).
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Proof. Since maxx∈I |di(x)| ≤ 1, we obtain that for all g, h ∈ C∗(I) ⊂ C(I),

dC(I)(Tg, Th) = max
x∈[x0,xN ]

|Tg(x)− Th(x)|

= max
i=1,2,··· ,N

max
x∈[xi−1,xi]

|Tg(x)− Th(x)|

= max
i=1,2,··· ,N

max
x∈[xi−1,xi]

|cil−1i (x) + di(l
−1
i (x))si(g(l−1i (x))) + fi

− cil−1i (x) + di(l
−1
i (x))si(h(l−1i (x))) + fi|

= max
i=1,2,··· ,N

max
x∈[xi−1,xi]

|di(l−1i (x))si(g(l−1i (x)))− di(l−1i (x))si(h(l−1i (x)))|

≤ max
i=1,2,··· ,N

max
x∈[xi−1,xi]

|si(g(l−1i (x)))− si(h(l−1i (x)))|

≤ max
i=1,2,··· ,N

sup
x∈[xi−1,xi]

ϕ(|g(l−1i (x))− h(l−1i (x))|),

where ϕ : (0,+∞) → (0,+∞) is some non-decreasing function such that ϕ(t) < t for t > 0

and t → ϕ(t)
t

is non-increasing. Since ϕ : (0,+∞) → (0,+∞) is non-decreasing continuous
function and l−1i : [xi−1, xi] → [x0, xN ] for all i = 1, 2, · · · , N , we obtain that for i0 ∈
{1, 2, · · · , N} and x0 ∈ [xi0−1, xi0 ],

ϕ(|g(l−1i0 (x0))− h(l−1i0 (x0))|) ≤ϕ( max
x∈[xi0−1,xi0 ]

|g(l−1i0 (x))− h(l−1i0 (x))|)

≤ϕ( max
x∈[x0,xN ]

|g(x)− h(x)|)

=ϕ(dC(I)(g, h)).

Since x0 was arbitrary,

sup
x∈[xi0−1,xi0 ]

ϕ(|g(l−1i0 (x)− h(l−1i0 (x))|) ≤ϕ(dC(I)(g, h))

and since i0 was arbitrary,

max
i=1,2,··· ,N

sup
x∈[xi−1,xi]

ϕ(|g(l−1i (x)− h(l−1i (x))|) ≤ϕ(dC(I)(g, h)).

Hence we obtain

dC(I)(Tg, Th) ≤ max
i=1,2,··· ,N

sup
x∈[xi−1,xi]

ϕ(|g(l−1i (x)− h(l−1i (x))|)

≤ϕ(dC(I)(g, h)) = ϕ(dC(I)(g, h)).

So we conclude that T : C∗(I) → C∗∗(I) ⊂ C∗(I) is a Rakotch contraction (with the same
function ϕ) on the complete metric space (C∗(I), dC(I)). Theorem 2.3 (1) implies that T
possesses a unique fixed point in C∗(I). That is, there exists a continuous function f ∈ C∗(I)
such that for all x ∈ [x0, xN ],

Tf(x) = f(x).
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Since T : C∗(I) → C∗∗(I) (by Lemma 4.1), we have f = Tf ∈ C∗∗(I). That is, there is
a continuous function f that passes through the given data points {(xi, yi) ∈ I × R : i =
0, 1, 2, . . . , N}. Let G denote the graph of f ∈ C∗∗(I), that is, G := {(x, f(x)) : x ∈ [x0, xN ]}.
Since f is a fixed point of the operator T and if x ∈ [xi−1, xi], then

Tf(x) = Fi(l
−1
i (x), f(l−1i (x))),

we obtain that for all x ∈ [x0, xN ],

f(li(x)) =Tf(li(x))

=Fi(l
−1
i (li(x)), f(l−1i (li(x))))

=Fi(x, f(x)).

Since wi(x, y) = (li(x), Fi(x, y)) for all for i = 1, 2, · · · , N , we obtain that

wi(G) =wi({(x, f(x)) : x ∈ [x0, xN ]})
={wi(x, f(x)) : x ∈ [x0, xN ]}
={(li(x), Fi(x, f(x))) : x ∈ [x0, xN ]}
={(li(x), f(li(x))) : x ∈ [x0, xN ]}
={(x, f(x)) : x ∈ [xi−1, xi]}.

Hence

G ={(x, f(x)) : x ∈ [x0, xN ]}

=
N⋃
i=1

{(x, f(x)) : x ∈ [xi−1, xi]}

=
N⋃
i=1

wi(G).

This completes the proof.

Remark 4.3. In the case where the vertical scaling factor parameters are constants, Barnsley
investigated the existence of affine FIFs by using the Banach fixed point theorem (see [1]), and
Wang and Fan introduced a natural generalization of Barnsley’s affine FIFs by using special
function vertical scaling factors and Banach’s fixed point theorem (see [?]). Here, we study
the existence of generalized FIFs with function vertical scaling factors by using the Rakotch
fixed point theorem, and the techniques used in Theorem 4.2 is completely different from those
used in [1]-[2]. But Theorem 4.2 does not ensure that the IFS{I×R;wi, i = 1, 2, · · · , N} has
a unique invariant set. The uniqueness of invariant set is determined explicitly in Theorem
5.1.
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5 Attractor of a certain IFS

In this section, we ensure that a generalized IFS{I × R;wi, i = 1, 2, · · · , N} with special
function vertical scaling factors has a unique invariant set (attractor). Theorem 5.1 that
is our main theorem in this paper improves upon a result proved by [10], and the proof of
Theorem 5.1 is based on arguments first applied in [10]. If we combine the both of Theorem
4.2 and Theorem 5.1 into a party, we can easily know that the graph of a generalized FIF
with special function vertical scaling factors is a unique attractor of a certain IFS.

Theorem 5.1. Let N be a positive integer greater than one. Let each si be a bounded Rakotch
contraction. Let {I × R;wi, i = 1, 2, · · · , N} denote the IFS defined above, associated with
the set of data

{(xi, yi) : i = 0, 1, · · · , N}.
Then there is a metric dθ on I × R, equivalent to the Euclidean metric d0, such that for all
i = 1, · · · , N , wi are Rakotch contractions with respect to dθ. In particular, there exists a
unique nonempty compact set G ⊂ I × R such that

G =
N⋃
i=1

wi(G).

Proof. We define a metric dθ on I × R by

dθ((x
′, y′), (x′′, y′′)) := |x′ − x′′|+ θ|y′ − y′′|,

where θ is a positive real number which is specified below. Since |di(x′)−di(x′′)| ≤ Ldi|x′−x′′|
and Fi(x, y) := cix+ di(x)si(y) + fi,

|Fi(x′, y′)−Fi(x′′, y′′)| =
=|cix′ + di(x

′)si(y
′) + fi − (cix

′′ + di(x
′′)si(y

′′) + fi)|
≤|ci||x′ − x′′|+ |di(x′)si(y′)− di(x′′)si(y′′)|
≤|ci||x′ − x′′|+ |di(x′)||si(y′)− si(y′′)|+ |si(y′′)||di(x′)− di(x′′)|
≤|ci||x′ − x′′|+ |si(y′)− si(y′′)|+ sup

y′′∈D(si)

|si(y′′)||di(x′)− di(x′′)|

≤(|ci|+ sup
y′′∈D(si)

|si(y′′)|Ldi)|x′ − x′′|+ |si(y′)− si(y′′)|,

where D(si) ⊂ R is the domain of definition of si. Let

k := max
i=1,2,··· ,N

(|ci|+ sup
y′′∈D(si)

|si(y′′)|Ldi),

Then for all (x′, y′), (x′′, y′′) ∈ I × R,

|Fi(x′, y′)− Fi(x′′, y′′)| ≤ k|x′ − x′′|+ ϕ(|y′ − y′′|),
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where ϕ : (0,+∞) → (0,+∞) is some non-decreasing function such that ϕ(t) < t for

t > 0 and t → ϕ(t)
t

is non-increasing. That is, each Fi,j is a Rakotch contraction (with the
same function ϕ) with respect to the second variable, and Lipschitz with respect to the first
variable. Hence we obtain for all (x′, y′), (x′′, y′′) ∈ I × R,

dθ(wi(x
′, y′), wi(x

′′, y′′)) =dθ((li(x
′′), Fi(x

′, y′)), (li(x
′′), Fi(x

′′, y′′)))

=|li(x′)− li(x′′)|+ θ|Fi(x′, y′))− Fi(x′′, y′′)|
≤|ai||x′ − x′′|+ θ(k|x′ − x′′|+ ϕ(|y′ − y′′|))
=|ai||x′ − x′′|+ θk|x′ − x′′|+ θϕ(|y′ − y′′|)
≤(|ai|+ θk)|x′ − x′′|+ θϕ(|y′ − y′′|).

Let (x′, y′), (x′′, y′′) ∈ I × R and (x′, y′) 6= (x′′, y′′). Since ϕ : (0,+∞) → (0,+∞) is non-
decreasing continuous function and ϕ(t) < t for all t > 0, we obtain that

dθ(wi(x
′, y′), wi(x

′′, y′′)) ≤(|ai|+ θk)|x′ − x′′|+ θϕ(|y′ − y′′|)

=(|ai|+ θk)|x′ − x′′|+ θ
ϕ(|y′ − y′′|)

|x′ − x′′|+ |y′ − y′′|
(|x′ − x′′|+ |y′ − y′′|)

=(|ai|+ θk + θ
ϕ(|y′ − y′′|)

|x′ − x′′|+ |y′ − y′′|
)|x′ − x′′|

+ θ
ϕ(|y′ − y′′|)

|x′ − x′′|+ |y′ − y′′|
(|y′ − y′′|)

≤(|ai|+ θk + θ
ϕ(|x′ − x′′|+ |y′ − y′′|)
|x′ − x′′|+ |y′ − y′′|

)|x′ − x′′|

+ θ
ϕ(|x′ − x′′|+ |y′ − y′′|)
|x′ − x′′|+ |y′ − y′′|

(|y′ − y′′|)

≤(|ai|+ θk + θ)|x′ − x′′|+ θ
ϕ(|x′ − x′′|+ |y′ − y′′|)
|x′ − x′′|+ |y′ − y′′|

|y′ − y′′|)

≤max{|ai|+ θk + θ,
ϕ(|x′ − x′′|+ |y′ − y′′|)
|x′ − x′′|+ |y′ − y′′|

}(|x′ − x′′|+ θ|y′ − y′′|)

= max{|ai|+ θk + θ,
ϕ(|x′ − x′′|+ |y′ − y′′|)
|x′ − x′′|+ |y′ − y′′|

}dθ((x′, y′), (x′′, y′′))

≤max{ max
i=1,2,··· ,N

|ai|+ θk + θ,
ϕ(|x′ − x′′|+ |y′ − y′′|)
|x′ − x′′|+ |y′ − y′′|

}dθ((x′, y′), (x′′, y′′)).

Since N > 1, we obtain 0 < ai := xi−xi−1

xN−x0
< 1 for all i = 1, 2, · · · , N .

Let

θ :=
1−maxi=1,2,··· ,N |ai|

2(k + 1)
.
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Then 0 < maxi=1,2,··· ,N |ai|+ θk + θ < 1 and since k ≥ 0, we obtain 0 < θ < 1.
Let for all t > 0,

β(t) := max{ max
i=1,2,··· ,N

|ai|+ θp+ θ,
ϕ(t)

t
}.

Then because α(t) := ϕ(t)
t

and α : (0,+∞) → [0, 1) is a non-increasing, we can see that β :
(0,+∞)→ [0, 1) is a non-increasing and for each (x′, y′), (x′′, y′′) ∈ I × R, (x′, y′) 6= (x′′, y′′),

dθ(wi(x
′, y′), wi(x

′′, y′′)) ≤ β(d((x′, y′), (x′′, y′′)))dθ((x
′, y′), (x′′, y′′)),

where d((x′, y′), (x′′, y′′)) := |x′ − x′′| + |y′ − y′′|. Since 0 < θ < 1, for all (x′, y′), (x′′, y′′) ∈
I × R, (x′, y′) 6= (x′′, y′′),

|x′ − x′′|+ θ|y′ − y′′| ≤ |x′ − x′′|+ |y′ − y′′|.

That is,
dθ((x

′, y′), (x′′, y′′)) ≤ d((x′, y′), (x′′, y′′)).

Since β : (0,+∞)→ [0, 1) is a non-increasing, we can see that

dθ(wi(x
′, y′), wi(x

′′, y′′)) ≤β(d((x′, y′), (x′′, y′′)))dθ((x
′, y′), (x′′, y′′))

≤β(dθ((x
′, y′), (x′′, y′′)))dθ((x

′, y′), (x′′, y′′)).

Hence wi are Rakotch contractions in (I×R, dθ). On the other hand, metric dθ is equivalent
to the Euclidean metric d0 on I × R (see [10]). So (I × R, dθ) is a complete metric space.
Hence wi : I × R → I × R is a Rakotch contraction in (I × R, dθ) and by Theorem 2.3 (1),
there exists an unique fixed point in I × R. By Theorem 2.3 (2), for the complete metric
space (I × R, dθ), there is a unique nonempty compact set G ⊂ I × R such that

G =
N⋃
i=1

wi(G).

By the definition of Hausdorff metric, equivalence of two metrics implies the equivalence of
Hausdorff metrics generated by them (see [9], p.91, Lemma 3.6). Hence for (I×R, d0), there
is a unique nonempty compact set G ⊂ I × R such that

G =
N⋃
i=1

wi(G).

This completes the proof.

Remark 5.2. The boundedness of si is the essential condition to establish a unique invariant
set of an iterated function system.
In the fractal interpolation function with function vertical scaling factors, 0 < maxx∈I |di(x)| <
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1 (see [?], see [12], p.3-4, cf. [2]). Let M := maxx∈I |cix+ fi| and h ≥ M
1−maxx∈I |di(x)|

. Then

for all y ∈ [−h, h],

|Fi(x, y)| = |cix+ di(x)y + fi|
≤M + max

x∈I
|di(x)||y|

≤M + max
x∈I
|di(x)|h ≤ h.

So for all (x, y) ∈ I× [−h, h], we can see that Fi(x, y) ∈ [−h, h]. That is, an iterated function
system,

{I × [−h, h];wi : i = 1, 2, · · · , N},
has been constructed (cf. [3], p.1897). Thus D(si) = [−h, h] and si(y) := maxx∈I |di(x)|y is
bounded in D(si) (see Remark 3.1). Hence the boundedness of si in D(si) is the essential
condition to establish a unique invariant set of an iterated function system (see the proof of
Theorem 5.1, cf. [3], p.1897, the proof of Theorem 2.1).

Remark 5.3. Our result is a substantial generalization of [?, ?, ?]. The function whose
graph is the attractor of an IFS as described in Theorem 4.2 and Theorem 5.1 generalizes the
affine fractal interpolation function (see [1]), the fractal interpolation function with function
vertical scaling factors (see [?], see [12]) and the nonlinear fractal interpolation function
(see. [10]). (1) In the affine fractal interpolation function (cf. [1], p.308, Example 1), for
all t > 0,

ϕ(t) := max
i=1,2,··· ,N

|di|t,

where |di| < 1 for all i = 1, 2, · · · , N .
(2) In the fractal interpolation function with function vertical scaling factors (cf. [?], cf.
[12], p.3), for all t > 0,

ϕ(t) := max
i=1,2,··· ,N

max
x∈I
|di(x)|t,

where di(x) is Lipschitz function defined on I satisfying supx∈I |di(x)| < 1 for all i =
1, 2, · · · , N . (3) In the nonlinear fractal interpolation function (cf. [10]), di(x) ≡ 1 and
ϕ : (0,+∞) → (0,+∞) is a non-decreasing continuous function such that for any t > 0,

α(t) := ϕ(t)
t
< 1 and the function (0,+∞) 3 t → ϕ(t)

t
is non-increasing. Thus, we improve

upon results proved by [1], [12] and [10].

6 A certain generalized fractal interpolation function

In this section we focus on generalized FIFs with a special structure by means of results
obtained in the previous sections. For this purpose, we give an extremely explicit simple
example to demonstrate the effectiveness of the preceding theory. We may assume, without
loss of generality, that [x0, xN ] = [0, 1]. This special case can always be achieved by means
of an affine transformation (which does not change the existence of FIF) (see [2]).
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Let ϕ(t) := t
1+t

for t ∈ (0,+∞). Then ϕ : (0,+∞) → (0,+∞) is a non-decreasing

continuous function and t→ ϕ(t)
t

is non-increasing continuous function.
Let a set of data {(xi, yi) : i = 0, 1, · · · , N} be given, where xi, yi ∈ [0, 1] for all i =
0, 1, · · · , N . Let for all i = 1, 2, · · · , N ,

di(x) := 22ixi(1− x)i.

Then
max

x∈[x0,xN ]
|di(x)| = 1

and by differential mean value theorem, for all x′, x′′ ∈ [0, 1], there is Ldi > 0 such that

|di(x′)− di(x′′)| ≤ Ldi |x′ − x′′|.

Let for y ∈ [0,+∞) and i = 1, 2, · · · , N ,

si(y) :=
y

1 + iy
.

Then, for y′, y′′ ∈ [0,+∞),

|si(y′)− si(y′′)| = |
y′

1 + iy′
− y′′

1 + iy′′
| ≤ |y′ − y′′|

1 + i|y′ − y′′|

≤ |y′ − y′′|
1 + |y′ − y′′|

= ϕ(|y′ − y′′|).

That is, each si is Rakotch contraction (with the same function ϕ) that is not Banach
contraction on [0,+∞) (see [10], cf. [11], p.848, cf. [8], p.262).
Let for all i = 1, 2, · · · , N ,

wi(x, y) := (aix+ ei, cix+ di(x)si(y) + fi),

where

ai = xi − xi−1, ei = xi−1,

ci = yi − yi−1, fi = yi−1.

Then, by Theorem 4.2 and Theorem 5.1, there exists a continuous function f : [0, 1] → R
that interpolates the given data {(xi, yi) : i = 0, 1, · · · , N}. Moreover, the graph G of f is
invariant with respect to {[0, 1]× R;w1, w2, · · · , wN}, i.e.,

G =
N⋃
i=1

wi(G).

This clearly shows that our method is much more effective than the method due to [1]-[10].
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Remark 6.1. We refer to f as a generalized fractal interpolation function with function
vertical scaling factors. The reason for this name is that the functions Fi take the form

Fi(x, y) = cix+ di(x)si(y) + fi,

where maxx∈I |di(x)| ≤ 1 and each si is Rakotch contraction.
That is, each Fi, in general, is generalized with respect to the second variable y (cf. [10]).
In fact, in [1]-[12], since 0 < |di(x)| ≡ |di| < 1 or 0 < maxx∈I |di(x)| < 1 and

di(x)y =
di(x)

maxx∈I |di(x)|
max
x∈I
|di(x)|y,

we can see that

Fi(x, y) = cix+ di(x)y + fi

= cix+ d∗i (x)si(y) + fi,

where d∗i (x) := di(x)
maxx∈I |di(x)|

and si(y) := maxx∈I |di(x)|y, and thus each si is a special Banach

contraction and linear. That is, each Fi(x, y) is a special Banach contraction and linear with
respect to the second variable y. Then the corresponding FIF is an affine FIF introduced by
Barnsley (see [1]) or a FIF with function vertical scaling factors (see [?], see [12], cf. [2]).
Obviously, we can say that the generalized FIFs with function vertical scaling factors may
have more flexibility and applicability.

In below, we give the graph of a linear FIF, the graph of a nonlinear FIF of [10] that is
not a linear FIF, and the graph of a generalized FIF that is not a FIF of [10] (see Fig. 1,
Fig. 2, Fig. 3). Here we omit their details to avoid the repetition.

7 Conclusion

The FIFs have been widely used in approximation theory, image compression, computer
graphics and modeling of natural surfaces such as rocks, metals, terrains and so on. In
order to get more flexibility and diversity in modeling natural shapes and phenomena or in
image processing, we introduced new generalized FIFs which generalize widely used linear
FIFs. In order to obtain new generalized FIFs, we use Rakotch contractions and special
function vertical scaling factors, and we have presented the principle and the method of
generalized fractal interpolation in detail. Dealing with generalized fractal interpolation
functions is better than the one provided by [10]. Theorem 4.2 and Theorem 5.1 ensure that
an attractor of constructed generalized IFS is a graph of some continuous function which
interpolates the given data. In particular, an explicit illustrative example shows that our
result remains still true under essentially weaker conditions on the maps of IFS. Comparing
linear FIFs with function vertical scaling factors and generalized FIFs with function vertical
scaling factors, we can know that the FIFs considered in this paper have more flexibility
and diversity and are more suitable to the fitting and approximation of many complicated
functions.
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Figure 1: A linear FIF.

Figure 2: A nonlinear FIF of [10] that is not a linear FIF.
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Figure 3: A generalized FIF that is not a FIF of [10].
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Abstract. In this paper, design Hidden Bifurcation kind to Multiscroll Chaotic
Attractors via Saturated Function Series are reconnoitred. The idea was taken from
the work Zaamoune, et al(2019) and the method introduced by Menacer, et al. (2016)
for Chua multiscroll attractors. These idea (hidden bifurcation kind) depends on how
you appear the scrolls odd or even were the number of scrolls is even. We have studied
many examples to prove this idea, mentioned that the number n of scrolls satisfies
n = p + q + 2 in LÜ , Chen et al (2004).
Keywords: Hidden bifurcation, multiscroll chaotic attractor, saturated function
series..

1 Introduction

It is well known that the method hidden attractor generating one-directional(1-
D) -scroll has been studied in the last few years [1]-[3]-[4]. Since the method
was presented by Leonov, et al [4] in the Chua attractor, they have proposed
efficient technique for the numerical localization of the hidden attractors in
one-directional dynamical systems. Hidden attractor has many applications
in a real word like mechanics, electronics, chemistry, biology but the most
important in electronic circuits (hysteresis circuit, and saturated circuit). In
2016, the auteur’s Menacer, et al changed the type of discrete parameters by
presented a generating multi-spirals, and this new method they called a ”hidden
bifurcation”, the cause of this name it’s has a change in the number of spirals.
In this paper, we study design hidden bifurcation kind method in the attractor
for generating one-directional (1-D) -scroll by saturated function series. In 2004
Chen, et al design and analysis of multi scroll chaotic attractors from saturated
function series [8], but we present a new idea in hidden bifurcation, where we
know that the role of method hidden bifurcation it’s a parametres control in
the number of spirals, her in this work p1 and q1 in function 12 it’s a bossed. In
this article, we change the values of system Chen parameters 11 a, b ,c and d1
we found a new attractor different about Chen attractor in [8], we change every
time the parameter ε in 0.55 to 1 and the parameters p1 and q1 and we noted
that it’s not only the parameter εcontrol in the appearance of numbers scrolls,
the parameters p1 and q1 also control in appearance of numbers scrolls it’s a
new idea. This paper is disposed of as follows : In Section 2, the analytical-
numerical method for hidden attractor proposed by Leonov in [6],[7]. the model
of 1−D scroll chaotic attractors generated by saturated function series proposed
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.In Section 3, the model of 1−D scroll chaotic attractors generated by saturated
function series proposed. In section 4 , the localization technique presented in
[2] for hidden bifurcation in 1−D scroll chaotic attractors, we introduced the
results for a new idea. Finally, in Sec. 6, a terse conclusion is pictured.

2 Analytical-numerical procedure for attractors
localization

Leonov et al. [6],[9], [10] found a procedure to discover numerically hidden
attractor for Chua attractor. The technique developed in [2], discovering hidden
bifurcations in the multispiral Chua attractor. To improv, this numerical
method, consider a system with one-directional (1-D) -scroll

dx

dt
= Px+ βΨ(κTx), x ∈ R3. (1)

were P is a constant (n× n) matrix,β, κ are constant n−dimensional vectors,
T is a transposition operation, Ψ(ς) is a continuous piecewise-differentiable
vector-function, and Ψ(0) = 0. Consider a coefficient of Harmonic linearization
k at like the matrix P0 as :

P0 = P + kβκT (2)

wich ±iω0 (ω0 > 0) eigenvalues the matrix P0 and the rest have negative real
parts. Suppose that such k occurs. So, rewrite system 1 as.

dx

dt
= P0x+ βϕ(κTx), (3)

were ϕ(ς) = Ψ(ς)−kς.We display a fixed sequence of functions ϕ0(ς), ϕ1(ς), · · · , ϕn(ς),
that the function ϕ0(ς) is small, and ϕm(σ) = ϕ(ς). In this state the smallness of
function ϕ0(ς), permit one to practise the procedure of harmonic linearization
for the system

dx

dt
= P0x+ βϕ0(κTx) (4)

and conclude a stable nontrival periodic solution x0(t). So, the localization of
the attractor of a system(19), design numerically the transformation of this
periodic solution. So, we obtain the primary condition x0(0) of the periodic
solution, system (4) can be changed by S (X = SY ) to the form :

·
y1 = −ω0y2 + v1ϕ

0(y1 + ct3Y3)
·
y2 = ω0y1 + v2ϕ

0(y1 + ct3Y3)
·
Y3 = A3Y3 + V3ϕ

0(y1 + ct3Y3)

(5)

So V3 and c3 is an (n− 2)−dimensional vector, y1, y2 are scalar values; Y3 is
an (n− 2)−dimensional vector, v1 and bv2 are real numbers; A3 is an (n− 2)×
(n− 2) matrix, where all of its eigenvalues have negative real parts. Supposed
that for the matrix A3 there exists a d3 > 0 such that

Y t3 (A3 +At3)Y3 ≤ −2d3 |Y3|2 , ∀Y3 ∈ Rn−2. (6)
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In one-directional(1-D) -scroll, case, present the describing function Φ of a real
variable ς as follows:

Φ (ς) =

∫ 2π/ω0

0

cos(ω0t)ς) cos((ω0t) dt (7)

Theorem 1. If a positive ς0 satisfies that

Φ(ς0) = 0, b1
dΦ(ς)

dς

∣∣∣∣∣
ς=ς0

< 0 (8)

So, for the initial condition of the periodic solution X0(0) = S(y1(0), y2(0),
Y3(0))T at the first step of algorithm, one has

y1(0) = ς0 +O(ε), y2(0) = 0, Y3(0) = On−2(ε) (9)

In Application, to find k and ω0, can uses the transfer function of system (4),

W (ρ) = κT (M − ρI)−1β (10)

where ρ is a complex variable. The number ω0 is calculated from the equation
ImW (iω0) = 0 and k is then determined using the formula k0 = −ReW (iω0).

3 1 − D Scroll Chaotic Attractor via a saturated
function series

Here, to generate 1−D n scroll chaotic attractor we presented a system from
saturated function series follows :

·
x = y
·
y = z
·
z = −ax− by − cz + d1f(x; k1;h1; p1; q1)

(11)

where

f(x; k1;h1; p1; q1) =


y1 if x > q1h1 + 1
y2 if |x− ih1 ≤ 1,−p1 ≤1 i ≤ q1|
y3 if ih1 + 1 < x < (i+ 1)h1 − 1
and − p1 < i < q1 − 1
y4 if x < −q1h1 − 1

(12)

y1 = (2q1 + 1) k1 , y2 = k1 (x− ih1) + 2ik1, y3 = (2i+ 1) k1, and y4 =
− (2q1 + 1) k1here, a, b, c, d1 are real numbers and the parameters p1, q1, h and
k are integers. The formula to calculated the number n of scrolls, it’s explained
in Chen, et al [8] and in Zaamoune, et al[11] For k = 11,h = 22,p1 = 3, q1 = 3,
a = d1 = 0.8, c = 0.72 and b = 0.6 a 8-scroll attractor is generated as the
verged attractor of the system (11-12), see Fig 1
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Fig. 1. One-directional 8-scroll chaotic attractors.

4 Generalized hidden bifurcation with scalar
nonlinearity.

Now, we apply the above procedure; rewrite a system 11 in the form

dx

dt
= Px+ βΨ(κtx), x ∈ R3 (13)

Here

P =

 0 1 0
0 0 1
−a −b −c

 , X =

x
y
z

 ,

κ =

 1
0
0

 , β

 0
0
d1

 and ψ(ς) = f(ς).

Define the coefficient k and a small parameter ε, system (13) can be rewrite in
the forme :

dx

dt
= P0x+ βεϕ(κTx), (14)

where

P0 = P + kβκT =

 0 1 0
0 0 1

k0d1 − a −b −c

 ,

λP0
1,2 = ±iω0, λP0

3 = −d

The transfer function WP (λ) of system (14) can be given by

WP0(λ) = κT (P − λI)−1β (15)

where λ is a complex variable. By the transformation X = SY , system (14) is
changed to the form

dY

dt
= HY + vεϕ(cTY ) (16)
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where

H =

 0 −ω0 0
ω0 0 0
0 0 −d

 , Y =

 y1
y2
Y3

 , v =

 v1
v2
1



and c =

 1
0
−h

. The transfer function of system (16) can be written as

WH(λ) = cT (H − Iλ)−1v
= h

d+λ − λ
v1

λ2+ω2
0

+ ω0
v2

λ2+ω2
0

So, we could obtain the implies k, d, h, v1, v2 by using the equality of transfer
functions of systems (14) and (16):

WH(λ) = κT (M0 − λI)−1β (17)

This implies the following relations:

k0 =
a−ω2

0d
d1

d = c

h = −d1
ω2

0+d
2

v1 = −d1
ω2

0+d
2

v2 = −cd1
ω0(ω2

0+d
2)

(18)

We utilized the transformation X = SY the following relationships can be
gotten :

H = S−1P0S, b = S−1β, cT = κtS (19)

So, by 19 we found this matrix :

S =

 S11 = 1 S12 = 0 S13 = −h
S21 = 0 S22 = −ω0 S23 = dh

S31 = −ω3
0 S32 = 0 S33 = d2h


So, thr first step in above procedure is determine the initial data, as

X(0) = SY (0) = S

 ς0
0
0

 =

 ς0S11

ς0S21

ς0S31

 (20)

For system the Chen, the initial condition is :

X0(0) =

(
x0(0) = ς0, y

0(0) = 0, z0(0) = −ς0ω3
0

)
(21)
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5 Numerical Results of Hidden Bifurcation kind

In this work, we introduced a new idea in hidden bifurcation behavior in the
attractor by we changed the values of parameters of the system generated via
saturated function serie. So, we presented the system (11-12) with parameter
values

a = d1 = 0.8, c = 0.72, b = 0.6p1 = q1 = 3, k = 11andh = 22

By folowing the above method we are started first calculation the frequency ω0

and a coefficient of harmonic linearization k as well :

ω0 = 0.7745 and k = 0.46

Then, we presented fours cases numbers of scrolls 4, 6, 8, 10, by numerous
sequentially ε from the value ε = 0.55 to ε = 1. while in the case of p = 8 and
q = 0,the initial conditions are : (x0(0) = −3.3256, y0(0) = 0, z0(0) = 1.5450.)

When, p = q = 3 the hidden bifurcation kind is even as 2, 4, 6, 8 and for
p = 0, q = 6 the hidden bifurcation kind is odd as 1, 2, 3, 4, 5, 6, 7, 8 that means
the number of scrolls appearance is one by one, see figures (4, 5).

The case 4 scrolls, p = q = 1 the hidden bifurcation kind is even as 2, 4and
for p = 0, q = 2 the hidden bifurcation kind is odd as 1, 2, 3, 4, see figures (2,
3).

The case 6 scrolls, p = q = 2 the hidden bifurcation kind is even as 2, 4, 6
and for p = 0, q = 4 the hidden bifurcation kind is odd as 1, 2, 3, 4, 5, 6.

The case 10 scrolls, p = q = 4 the hidden bifurcation kind is even as
2, 4, 6, 8, 10 and for p = 0, q = 8 the hidden bifurcation kind is odd as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

The role idea of the hidden bifurcation kind was ’even or odd’ if the number
of the scrolls was even. This idea based on the principle idea of [11]. View that
when the parameters p or q equalizes zero the hidden bifurcation behavior
it was odd, as for, p = q the hidden bifurcation behavior was even and it’s
explicated in tables below (1) and figures (2, 3, 4, 5)

n = p + q + 2 The number of scrolls is even

p or q value Zero The scrolls appearance is odd

p = q The scrolls appearance is even

Table 1. The behavior of hidden bifurcation kind
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(a) (b)

(c)

Fig. 2. The increasing number of spirals of system (14) according to increasing ε
values, when p = 1 and q = 1, k=11 and h=22. (a) : The first scroll for ε=0.55, (b)
: The second scroll for ε=0.92, (c) : The third scroll for ε=1.
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(a) (b)

(c)

Fig. 3. The increasing number of spirals of system (14) according to increasing ε
values, when p = 2 and q = 0, k=11 and h=22. (a) : The first scroll for ε=0.55, (b)
: The second scroll for ε=0.92, (c) : The third scroll for ε=1.
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(a) (b)

(c) (d)

Fig. 4. The increasing number of spirals of system (14) according to increasing ε
values, when p = 3 and q = 3, k=11 and h=22. (a) : The first scroll for ε=0.55, (b)
: The second scroll for ε=0.92, (c) : The third scroll for ε=0.975, (d) : The last scroll
for ε=1
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(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 5. The increasing number of spirals of system (14) according to increasing ε
values, when p = 6 and q = 0, k=11 and h=22. (a) : The first scroll for ε=0.55, (b) :
The second scroll for ε=0.92, (c) : The third scroll for ε=0.98, (d) : The fourth scroll
for ε=0.985, (e) : The fifthly scroll for ε=0.99, (f) : The sixthly scroll for ε=0.992,
(g) : The last scroll for ε=1
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Abstract. In this work we investigate the limits to the possibility to reveal the exis-
tence of weak microwave signals through Josephson junctions. Even if the Josephson
element is capable to reveal the electromagnetic field, thermal noise is to be quantified
by means of signal theory, as a confounding factor that limits the detection. We show
how the decision problem can be embedded in the frame of signal detection. As a
consequence, the optimization of the detection probability and the minimization of
the false alarm probability give a guide to select the Josephson junction parameters
that best suit the purpose.
Keywords: Josephson junctions, Escape time, Signal detection, Particle detection.

1 Introduction

When Josephson junctions (JJ) are employed as detectors of microwave signals,
they can reach a very high response (of the order of kV/W [31]), close to the
quantum sensitive limit [14,15,26]. Moreover, as superconducting elements, the
devices can work no matter how the temperature is lowered, thus allowing to
minimize thermal noise, at least until the contribution to the escapes through
quantum tunneling processes becomes statistically dominant. These premises
are, in a nutshell, the basis for the intensity of the efforts devoted to the
development of highly-sensitive detectors based on JJ [3], as well as Josephson
calorimeters [35,16]. To reveal even very weak electromagnetic signals, the
energy to induce the transition between two states of the JJ should be close to
the single photon energy. As the interaction between the JJ and the signal is
generally mediated by a resonant cavity, also the latter excitation should be on
the same energy scale [20]. Thus, for a more detailed description of the device
potentialities and limits, it is necessary to embed the problem in the context of
microwave photon manipulation through superconducting electronics [13,1]. In
doing so, the energy landscape of the device, as well as the antenna interaction
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with the microwave photon field, are essential for a device description [4]. It
is in fact the JJ potential that dictates the disturbing switches due to thermal
escapes and quantum tunneling [4,32]. A model for the detector consists of a
current drive that perturbs the JJ dynamics and favors the switches to a finite
voltage state; the statistics of the escape times are analyzed to highlight the
presence of the perturbation.

Several remarkable achievements have been reached so far. The minimum
photon content that can be revealed through JJ has been estimated in the order
of 102, a limit that can be possibly lowered [36]. It has also been demonstrated
that it is possible to resolve the number of photons in a propagating mode [11].
Quite naturally, to decide about the presence of a weak signal, it is necessary to
achieve a silent enough state, that is a device capable to stay quite if no signal
is applied. Some schemes that exploit the phase diffusion regime have been
recently proposed with such purpose [30]. However, for the purpose to exploit
the high sensitivity of JJ in the search for photons resulting from elusive parti-
cles as axions [7–9,28,10,22,37,3], it is necessary to set up a different detection
scheme to ascertain the existence of extra photons, above and beside the back-
ground [5]. The purpose of this work is to analyze a scheme for the detection
of such excess photons through the analysis of the JJ switching currents [2,29],
embedded in the frame of signal detection [12]. In fact, as the Josephson phase
is of quantum nature it is not directly accessible, detection is possible only if
the photons cause a switch, a passage from the superconducting state to a fi-
nite voltage state (mathematically, the problem amounts to determine the first
passage time across the separatrix of a potential well [17]). As the passage also
occurs because of thermal fluctuations, a careful analysis is necessary to prove
that the passages are a consequence of some external field. The framework of
signal detection allows to make simple estimates of the temperature constraints
and of the experimental set-up. As a consequence, the optimization of the de-
tection probability (and the minimization of the false alarm probability) gives
a guide to select the JJ parameters that best suit to reveal weak microwave
signals. In brief, detection amounts to the following question: how is it possible
to infer the presence of microwave extra photons, apart the thermal ones, from
the analysis of the switches to the finite voltage of a JJ? A tentative answer to
this question is the subject of the present paper, organized as follows: in Sect.
2 the problem will be extensively formulated, alongside with the description of
an electrical model for the dynamics of a JJ and of a perturbation. In Sect.
3 the signal analysis indications for the performances of the detection will be
recounted. Last Sect. 4 concludes.

2 The problem

We shall consider a small tunnel JJ coupled to the environment through the
bias current:

C
~
2e

d2ϕ

dt′2
+

1

R

~
2e

dϕ

dt′
+ I0 sinϕ = Ib + IN (t′) + IS(t′) (1)
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The right hand side of this equation summarizes the current supplied to the
junction. In this formulation, therefore, one assumes that the impedance of
the Josephson element is much lower than the impedance of any source, and
consequently the external world is seen as a current source (although other
configurations are possible, in which a voltage bias is more appropriated [24]).
Eq. (1) includes inertia (determined by the capacitance C), dissipation (as
governed by the dissipative element R) and fluctuations (the random current
IN (t′) supplied by the resistance), the nonlinear periodic term (the oscillating
Josephson current of amplitude I0), a constant bias current Ib, and the signal
current IS(t) (that summarizes the effects of the photon field). Fluctuations
are assumed to be Gaussian with:

〈IN (t′)〉 = 0, (2)

〈IN (t′)IN (t′ − s′)〉 =
2kBT

R
δ(t′ − s′). (3)

where kB is the Boltzmann constant, T is the absolute temperature, δ the Dirac
function, 〈·〉 is the expectation operator.

The usual normalized units [6,33] are as follows (here, as usual, ~ is the
reduced Planck constant, and e is the elementary charge):

• The current is normalized to the critical current I0:

γ =
Ib
I0
. (4)

• Time is normalized to ω−1J , where ωJ =
√

~C/2eI0 is the frequency of the
linear oscillator. :

t = t′ωJ . (5)

Introducing the normalized temperature D = kBTωJ

/
RI20 and the normalized

conductance 1
/
βc = (1/R)

√
~
/

(2eI0C), leads to the normalized versions of

Eqs.(1,2,3):

d2ϕ

dt2
+

1

βc

dϕ

dt
+ sinϕ = γ + γN (t) + γS(t), (6)

〈γN (t)〉 = 0, (7)

〈γN (t)γN (t− s)〉 = 2Dδ(t− s), (8)

where γ’s indicate the normalized current terms. The dynamics of the JJ is
characterized by the bias-dependent small oscillation frequency:

ω0(γ) =
(
1− γ2

)1/4
(9)

and the energy barrier that cages the dynamics is:

∆U(γ) = 2
[√

1− γ2 − γ cos−1(γ)
]
. (10)

Finally, the photon field γS is supposed to be modeled as a succession of nor-
malized impulses of amplitude A and duration δτ that arrive regularly with a
period T . The response of a JJ to such a field, and how the response can be
exploited to infer the existence of the field, is the problem dealt with in this
paper. Some indications are presented in the next Section.
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Fig. 1. Time dependent dynamics of the phase ϕ and the voltage dϕ/dt. The dashed
lines denote the time at which a passage to the finite voltage is detected.

3 Results

A JJ described by Eqs.(6,7,8) can undergo switches between the zero voltage
and the finite voltage, as shown in Fig.1. When the system switches, the
phase difference increases and, according to the a.c. Josephson relation V =
(h/2e)dϕ/dt [18,19], a voltage drop across the junction can be measured. The
switches can occur either because of thermal current (7,8), or because of the
current pulse train. The starting point is therefore to collect the sequence of
times at which a passage has occurred in the absence of the photon field drive:

t01, t
0
2, ... , t

0
N . (11)

For this case, one expects that, on average, the escapes (the passages across
the separatrix between the localized oscillations and unbound runaways) occur
with a rate given by the Kramers approximation [17]:

r0(γ,D) =
ω0

2π
e−

∆U(γ)
D (12)

(for the Gaussian noise; other kinds of noise give pretty different results [25]).
In the presence of a signal, which mimic the absorption of some photons that

is capable to induce a current into the JJ, the sequence of switches is presumably
altered, and the photons can be possibly revealed through deviations from the
purely thermal sequence (11); let us call the sequence of the escapes in the
presence of the extra-photons:

t11, t
1
2, ... , t

1
N . (13)

This sequence is expected to have a larger number of events in the same observa-
tion time respect to the unperturbed case (11). An example of two histograms
for {t0} (no signal) and {t1} (with signal) are shown in Fig. 2. We underline
that, at variance with the cases in which one is interested in counting the num-
ber of photons (e.g., [20]), to reveal a source of photons (e.g., the presence of
an axion field [3]) it suffices to statistically determine if an observed collection
of switches is more likely drawn from sequence (11) or from sequence (13).
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Fig. 2. Histograms of N = 104 switching times. Parameters of the simulations are:
γ = 0.8, D = 0.1, 1

/
βc = 0.025. The impulses that mimic the photon fields are of

amplitude A = 0.5, duration δτ = 10, and arrive regularly with a period T = 100.

In the simplest approximation, one expects that the rate r1 associated to
the escapes (13) in the presence of photons is just the sum of the unperturbed
rate r0 and an additional rate rA due to the photons:

r1(γ,D, γS) = r0(γ,D) + rA. (14)

In our settings, where the photons are modeled as current pulses with a period
T , we have rA = 1/T for a most efficient detector.

Apart the analytical approximations embodied in Eq.(14), for our line of
reasoning it is important to underline that the rates r0 and r1 are statistical
averages, for Eqs.(12,14) predict what happens on average. Thus, in a given
measurement time P one expects 1

/
〈t0i 〉 = n0 = Pr0 escapes in the purely

thermal case, and 1
/
〈t1i 〉 = n1 = Pr1 escapes in the presence of the extra

photons, with the obvious inequality n1 > n0. In an actual measurement, one
observes a certain number of switches, say n, and a decision is to be made: in
which sense the measured number favors an hypothesis (the switches are just
due to thermal activation) or the other (there are extra switches due to the
photon field)? Naturally, the more the two rates are apart, the more likely
is that the measurement is a clear cut decision. Also, no matter how close
they are, with a sufficiently long measurement time P it is always possible
to discriminate the two conditions. To make these ideas quantitative is the
objective of the next Section.
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Fig. 3. Length of the observation period P , according to estimate (16), as a function
of rA at a fixed r0 = 0.001 (solid red curve) and as a function of r0 at a fixed
rA = 0.001 (dashed blue curve).

3.1 Statistical analysis of the switching times

To quantify the efficiency of the detection of a photon field one can introduce the
Kumar-Caroll (KC) index dKC [21], in analogy with the detection of continuous
sinusoidal signals [12,2]:

dKC =
|〈t1〉 − 〈t0〉|√

1
2 [σ2(t1) + σ2(t0)]

. (15)

where 〈t0,1〉 is the average switching time in the absence (presence) of the
signal, and σ2(t0,1) the corresponding variances. This index is a proxy for the
Signal-to-Noise-Ratio (SNR) [21], and as such will be used in this paper.

Assuming a large number of events in the measurement time P , and that the
escapes due to the photons are an additional rate independent of the thermal
rate, and that a reliable detection requires at least dKC = 1, one obtains the
relation [34]:

P r2A −
1

2
rA − r0 = 0, (16)

between the rate of the photons rA, the thermal escape rate r0, and the obser-
vation time P . Inspection of Eq.(16) reveals that the measurement time length
P is positively related to the thermal rate r0, see Fig. 3.

Some further elaborations of the estimate (16) are relevant. To begin with,
one can define a ratio between the photon arrivals and the thermal spontaneous
escapes:

r0 = x rA

that allows to explicitly observe that:

dKC =

√
2PrA
2x+ 1

. (17)
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Fig. 4. Relation between the thermal escape rate as a function of the photon arrival
time, according to estimate (16), for different values of P .

This equation confirms the intuitive scaling between the observation time P ,
the photon arrival rate, and the ratio between the thermal and photon rates.
In particular, one can insert the matching condition P = 1/rA in Eq. (17) to
obtain the relation between the observation time, the temperature and bias
point through Eqs. (9)–(12).

In Fig. 3 it is displayed the behavior of the observation time P , calculated
according to Eq. (16), as a function of the inverse photon rate, r−1A (see the red
solid curve). If the photon rate is low, e.g. around 10−3 Hz, the observation
time for a dKC = 1 reads ∼ 1500 s. It is also noticeable that the dependence
is quadratic. Should the photon rate be much smaller than the assumed mHz,
the detection could prove unfeasible. Conversely, if the photon arrival rate is
relatively high, one can considerably increase also the thermal rate, and hence
higher temperatures are allowed.

In Fig. 4 it is displayed the behavior of the thermal escape rate, r0, as a
function of the photon arrival time, rA, for different values of the observation
time P . It is evident that the thermal escape rate (that is, the temperature of
the system) can be increased as the photon rate increases. However, for any
value of P , there is a threshold value of rA (e.g., rA ' 103 for P = 500) below
which thermal escapes to achieve a dKC = 1 become vanishingly small. The
latter condition entails extremely low temperatures.

In brief, if some SNR is to be reached, the trade-off between the parameters
of the experiment can be evaluated. A more detailed analysis of the problem
requires to retrieve the index (15) from numerical simulations of the model
equations (6,7,8), as we shall do below.

3.2 An example of the Kumar-Carrol index usage

To illustrate an application of the signal-to-noise index (15), let us suppose
that the index has been computed for several values of the bias current γ to
optimize the bias level. To fix the ideas, let us suppose that the highest value
of dKC corresponds to γ = 0.8; the escapes retrieved for such choice are shown
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Fig. 5. Histograms of the average over 20 switching times, for the same data of Fig.
2, and thus consisting of N ′ = 500 data. The other parameters are therefore the same
as in Fig. 2.

in Fig.2. The index reads dKC = 20.8, that indicates a very good SNR – would
it be possible to collect 10000 escapes, the average of the exit times could give
a clear cut indication of the presence, or not, of the excess photons. In fact the
statistics of the escapes can be summarized in Tab. 1.

Signal N 〈ti〉 σ(ti) σ(〈ti〉N )

absent 104 182.7 151 1.24

present 104 154.0 124 1.51

Table 1. Statistics of the escape times of Fig.2. Here N is the number of switches,
〈ti〉 the average escape time, σ(ti) the standard deviation, σ(〈ti〉N ) the standard
deviation of the average . The resulting KC-index reads dKC = 20.8.

It is evident that for the case under examination the detection performs
extremely well. With a KC-index around 20 the SNR is extremely high, and
also intuitively there is no doubt that, if the average escape time decreases
from ∼ 180 to ∼ 150, something has happened and a signal is present. This
is quite reasonable, for the switches occur on average with the same rate as
in the incoming pulses period T = 100; therefore the efficiency is very high
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(almost each pulse causes a switch) and the number of data is conspicuous
(N = 104). Under these circumstances, the statistical analysis is just a confirm
of the intuition. However, the approach proves useful for the design of an
experiment if it is not possible to collect as many as 104 switches. Let us
suppose, ceteris paribus, that the rate of arrival of the pulses is extremely low,
say 1

/
rA ∼ 1h, and therefore the number of events that can be collected in a

day of measurements is around N = 20. A principal question would be: how
many days of data collection should be planned to decide, with good confidence,
about the existence of the pulses?

Let us thus suppose that the actual sample of data to be analyzed consists
of M escape times, M � N , say M = 20 to fix ideas. A collection of 500
average escape times (over M = 20 events) retrieved binning the 104 data of
Fig. 2, is shown in Fig. 5. In a single measurement run in which 20 switches
are collected, a single average escape time would be obtained, and not always
the same value for the statistical fluctuations. Let us summarize the data in
Tab. 2.

Signal N ′ 〈ti〉 σ(ti) σ(〈ti〉N′)

absent 500 182.7 33.8 1.24

present 500 154.0 27.7 1.51

Table 2. Statistics of the escape times of Fig.5, that is the escape times averaged
over M = 20 events. Here N ′ = N/M = 500 is the number of means, 〈ti〉 the
average escape time over N ′ × M escapes, σ(ti) the standard deviation of the N ′

means, σ(〈ti〉N′) the standard deviation of the overall average. Naturally, 〈ti〉 and
σ(〈ti〉N′) coincide with Table 1, as they are computed on the same set of data. The
resulting KC-index for a single measurement (that is, an average over 20 data) reads
dKC = 0.93.

In the first place, let us remind of a subtle difference between Fig. 2 and
Fig. 5, as perhaps better explained in the corresponding Table 1 and Table 2.
Figure 2 is a collection of all data, any single switch that has occurred. Figure
5 is a collection of hypothetical repetition of the average over 20 switches. The
statistical test to decide about the presence of the signal is to be performed on
the average over all data in the case of Fig. 2, and hence the very high SNR,
compared to the test on a single event of Fig. 5, to which pertains a much
smaller SNR.

For the central limit theorem one can assume that the distribution of the
averages is approximately Gaussian, centered on the population average (that
is estimated through the average of the N = 104 data) and with a standard
deviation which is smaller than the population standard deviation.

Applying the signal analysis means to determine the error of the first type
α and of the second type β when a decision on the existence of the photon
field is to be made, on the basis of the escape time average. Let us do so with
the help of the Gaussian approximation, that is to assume that the histogram
of the average escape time of Fig. 5 is Gaussian distributed, as schematically
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Fig. 6. Application of the detection scheme to the averaged data assumed to be
Gaussian distributed.

illustrated by Fig. 6. To decide between the hypothesis one usually places a
threshold for the measured average escape time, 〈t〉th, see Fig. 6. The decision
will favor the hypothesis “1” (the photon field is there) if the actual measured
time is below the threshold, and obviously the complementary hypothesis (there
is no photon field) will be selected if the actual measured time is above. The
choice of the threshold reflects on the decision errors: either the probability
of false alarm (type I error α), or the probability of missing a signal (type
II error β). These features are combined in the so-called receiver operator
characteristic of the test statistic, that is, of the combination of the errors
α and β for each particular choice of the threshold. It is natural, if there
are not particular reasons to do otherwise, to choose the case α = β that
unequivocally individuates a threshold and hence the errors. The features of
the detection can thus be obtained by a straightforward application of the
central limit theorem with the data of histogram of Fig. 2: it suffices to notice
that the standard deviation σ (ti) that appears in the definition of dKC (15)
is smaller of a factor ∼

√
M ' 4.5, as it is confirmed by Tables 1,2. In this

manner one can connect the SNR estimated through dKC to the size of type
I and II errors, as illustrated in Fig. 7. In this figure, we show the dKC

index as a function of the sample size M (open circles and solid line). From
each estimated dKC index, according to the condition α = β, we can uniquely
determine the size of the errors of the test (triangles), see Fig. 6. In the same
figure, the solid line displays the dKC behavior estimated assuming that the
standard deviations in Eq. (15) decrease as the square root of the number of
data in a sample,

√
M . It is clear that such behavior scales nicely for M � N .

Therefore, if a sufficiently long simulation is available, it is possible to carefully
design the experiment to achieve the desired error bound.

Let us summarize how it is possible to put to a good use the definition
of the SNR through the KC-index (15). First, it is useful to select the most
appropriated parameter values to achieve the best SNR; in the present case we
have supposed that the optimization of the SNR has given the best bias point
γ = 0.8. For such parameter, a consistent number of events has been collected,
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N = 104. From the data so collected, it has been possible to determine the
number of experiments that could suffice to achieve the desired level of error
(type I and II, chosen to be identical).

Fig. 7. Application of the detection scheme to the averaged data assumed to be
Gaussian distributed. The circles (left axis) indicate the SNR ratio estimated by the
index dKC . The triangles (right axis) indicate the α = β level of the errors in the
detection through the sample average as a function of the number of switches M
of the average. The solid line is the estimate obtained assuming that the standard
deviations scale as the square root of the number of points N . The other parameters
are the same as in Fig. 2.

4 Conclusions

We have demonstrated that the application of signal analysis to switching event
of a Josephson junction subject to a periodic train of current pulses can be
used to carefully plan experiments devised to decide about the existence of
the perturbation. If the pulse train is to be interpreted as a photon field
that irradiates the junction, this scheme can be applied to decide about the
existence of elusive particles [3]. In particular the scheme can be useful if
the arrival frequency of the pulses is very low, and therefore it is particularly
cumbersome to collect a large number of events to distinguish the signal from
the external field from spontaneously, thermally activated, events. Under these
circumstances, it is necessary to resort to statistical test. When this is the case,
the SNR to be reached for a significant test is the guideline for an accurate
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experiment design. As the estimate of the SNR calls for extensive simulations,
both to optimize the parameters and to collect a statistically relevant number
of events, it is probably necessary to resort to parallel simulations, possibly
with CUDA architecture [27].

Let us add a word of caution. The analysis here presented is based on sample
mean, detection can be improved with maximum likelihood estimators [2], that
exploit the full information content of the escape distribution. However, the
analytical estimate of the distribution of the escapes is a relatively complicated
problem [23] to give a reliable solution for the estimate evaluation.
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Abstract. The guaranteed control problems for nonlinear dynamical systems with
uncertainty in initial states and parameters are studied. The case is investigate when
only the bounding sets for initial system states and for system parameters are given
without any additional statistical or probabilistic information on these values. Apply-
ing the previously developed approaches and new results developed here to evaluating
trajectory tubes and reachable sets, we study the properties of optimal control that
solves the problem of control for the trajectory tube of a dynamic system with un-
certainty and nonlinearity of a quadratic type.
Keywords: Nonlinear dynamics, Control, Estimation, Uncertainty, Ellipsoidal cal-
culus, Funnel equations.

1 Introduction

The paper investigates the problems associated with the study of reachable
sets of a nonlinear control dynamical system (and of a corresponding dif-
ferential inclusion) with incomplete information on the initial states of the
system or on other system parameters, limited by specifying only some spe-
cial sets containing the unknown elements (Kurzhanski[14], Kurzhanski and
Varaiya[16], Allgöwer and Zheng[1], Milanese et al.[18], Scweppe[22], Walter
and Pronzato[23]). As indicated in many studies, the geometry of the reach-
able sets of nonlinear dynamical systems may be very complicated. In these
cases, the approximation of reachable sets by domains of a certain canonical
form is of interest. As such canonical figures, the most natural are ellipsoids,
parallelepipeds, polyhedra and some other canonical figures. A number of im-
portant approaches are relevant for assessing the unknown states of control
systems and corresponding trajectory tubes of differential inclusions through
approximation by canonical sets and tubes of motions with an accurate descrip-
tion of their parameters and dynamic characteristics (Kurzhanski and Valyi[15],
Chernousko[5], Kostousova[12], Polyak et al.[21]).

Currently the principal facts and results of the theory of linear differential
systems with uncertain parameters are well developed, a number of important
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and computationally useful algorithms have been constructed for finding the
external and internal (with respect to the inclusion of sets) approximations
of the set-valued states of dynamical systems in the case of a linear system
dynamics. However the presence of nonlinear terms in the state velocities of
the control systems causes a loss of the convexity of the reachable sets and,
therefore, raises many theoretical questions and therefore requires the devel-
opment of related mathematical tools and algorithms that are adequate to
the indicated problems of nonlinear analysis. Some ideas and approaches to
the study of set-valued motions (trajectory tubes) for a number of differential
systems with nonlinearity and uncertainty in dynamics were presented earlier
in Filippova[7], Filippova and Lisin[8], Filippova and Matviychuk[9] (see also
references in the indicated publications).

In this paper we assume that in a dynamic system there are two types of
nonlinearity, namely, we have a combination of bilinear and quadratic func-
tions in the state velocities. Earlier, we examined the problems of evaluating
the reachable sets of systems under study taking into account all possible con-
trols at once. Knowing the areas of reachability with respect to all parameters
of the system under study (for all possible initial states, disturbances, controls)
is very useful, since it helps to evaluate the capabilities of the system. However,
it seems important to have a description of the trajectory tube generated by a
specific choice of a control function, it will allow solving optimization problems
for set-valued movements of the considered systems under uncertainty. Note
that in this paper we consider a special class of control systems with nonlin-
earity and uncertainty under other informational assumptions than was done
in a recent paper Filippova and Matviychuk[10]. Thus, this research continues
and complements developments in the field of mathematical control theory re-
lated to the study of the dynamics of multivalued states of nonlinear control
systems. The approaches and algorithms presented here may be applied in the
study of models with nonlinearity and uncertainty in real systems in robotics,
economics, biology and other fields (considered e.g. in Allgöwer and Zheng[1],
Bayen and Rapoport[2], Cecarelli et al.[4], Keller et al.[11]).

2 Problem formulation

2.1 Basic notations

The main notations used in the paper are basic; however, we define here some
additional, most frequently used and important constructions.

We denote by Rn the n-dimensional vector space and by compRn the set
of all compact subsets of Rn. Also Rn×m denotes the set of all n×m-matrices.

The usual inner product of x, y ∈ Rn is x′y = (x, y) =
∑n
i=1 xiyi with prime

as a transpose and also the

‖x‖ = ‖x‖2 = (x′x)1/2, ‖x‖∞ = max
1≤i≤n

|xi|

are corresponding norms for x ∈ Rn.
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For the identity matrix we use the symbol I ∈ Rn×n. Denote by Tr(A) a
trace (a sum of diagonal elements) of n× n-matrix A. Let B(a, r) = {x ∈ Rn :
‖x− a‖ ≤ r} be a ball in Rn with a center a ∈ Rn and with a radius r > 0.

We use here also the notation

E(a,Q) = {x ∈ Rn : (Q−1(x− a), (x− a)) ≤ 1}

for the ellipsoid in Rn, where a ∈ Rn is its center and a n × n-matrix Q is
symmetric and positive definite.

2.2 Main problem

We study here the nonlinear control system

ẋ = A(t)x+ f(x)d+ u(t),

x0 ∈ X0, t0 ≤ t ≤ T,
(1)

here x, d ∈ Rn, ‖x‖ ≤ K (K > 0), the function f(x) is quadratic in x, that is
f(x) = x′Bx, with a positive definite and symmetric n× n-matrix B.

Functions u(t) (“controls”) in (1) are assumed to be Lebesgue measurable
on [t0, T ] and

u(t) ∈ U , for a.e. t ∈ [t0, T ].

We assume that the constraint set U is given and U ∈ compRn. The n × n-
matrix function A(t) in (1) has the form

A(t) = A0 +A1(t), (2)

where the n× n-matrix A0 is given and the measurable n× n-matrix A1(t) is
unknown but bounded, A1(t) ∈ A1 for t ∈ [t0, T ], namely we have

A(t) ∈ A = A0 +A1, (3)

A1 =
{
A={aij}∈Rn×n : |aij |≤cij , i, j=1, . . . n

}
,

where cij ≥ 0 (i, j = 1, . . . n) are given numbers. The latter relations mean
that all elements of the matrix A(t) are known only up to certain errors, the
values of which are given (this does not exclude the case when some elements of
the matrix can be known exactly, this corresponds to the situation when some
cij = 0).

Assume that we have the ellipsoid as an initial set X0 in (1), that is

X0 = E(a0, Q0),

with a symmetric and positive definite matrix Q0 ∈ Rn×n and with a center
a0.

If it will be necessary we will use also a notation x(t;u(·)) = x
(
t;u(·), A(·), x0

)
with indication of additional parameters A(·), x0 for an absolutely continuous
function x(t) which is the solution to (1)–(3) with initial state x0 ∈ X0, with
admissible control u(·) and with a matrix A(·) satisfying (2)–(3).
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Due to the fact that some quantities are unknown but bounded, we are
forced to consider all possible versions of motions compatible with additional
data as a generalized solution to the control system, that is, we need to replace
a single-valued trajectory by a bundle or tube of motions of the following form
X (t;u(·)).

Definition 1. For each admissible control u(·) the generalized solution tube
X (t;u(·)) (with t ∈ [t0, T ]) of system (1)–(3) is defined as follows,

X (t;u(·)) = {x ∈ Rn :∃x0∈X0, ∃A(·)∈A,

x = x(t) = x
(
t;u(·), A(·), x0

)
}.

Let us consider the following main problems.

Problem 1. For each feasible control u(·)∈U , find the optimal external ellip-
soidal estimate E(â, Q̂;T, u(·)) of the reachable set X(T ;u(·)) of the system (1)-
(4), such that

X (T ;u(·)) ⊂ E(â, Q̂;T, u(·)).

Remark 1. Here we understand the optimality of the desired ellipsoidal esti-
mate, bearing in mind the closest operation with respect to inclusion of related
sets.

Problem 2. Given a vector x∗ ∈ Rn find the feasible control u∗(·) ∈ U such
that the related ellipsoidal estimate is optimal, that is we have

d(x∗, E(â∗, Q̂∗;T, u∗(·))) = inf
u(·)∈U

d(x∗, E(â∗, Q̂∗;T, u(·))) = ε∗.

3 Main results

First, we define an auxiliary parameter k, which is required to formulate the
main result (see also Filippova[7]). To do this, consider the matrix B1/2Q0B

1/2

and denote its maximal eigenvalue as k2, that is we have

E(a0, Q0) ⊆ E(a0, (k
+
0 )2B−1), (4)

and k+0 is the smallest positive number for which this estimate (4) is true.

Theorem 1. The upper ellipsoidal estimate is true

X (t0 + σ;u(·)) ⊆ E(a∗(t0 + σ), Q∗(t0 + σ) | u(·)) + o(σ)B(0, 1) (5)

with σ−1o(σ)→ 0 for σ → +0 and

a∗(t0 + σ) = ã(t0 + σ) + σ(â+ a′0Ba0 · d+ k2d) + σu(t0), (6)

and with functions ã(t), Q∗(t) satisfying the following equations

˙̃a = Ã0ã, t0 ≤ t ≤ T, ã(t0) = a0, (7)
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Q̇∗ = Ã0Q∗ +Q∗(Ã0)′ + qQ∗ + q−1G, Q∗(t0) = Q0, t0 ≤ t ≤ T, (8)

where
Ã0 = A0 + 2d · a′0B, q =

(
n−1 Tr ((Q∗)−1G)

)1/2
, (9)

G = diag
{

(n− v)
[ n∑
i=1

cji|ãi|+
(

max
σ={σij}

n∑
p,q=1

Q∗pqcjpcjqσjpσjq
)1/2]2}

, (10)

with a maximum in (10) calculated over numbers σij = ±1, i, j = 1, . . . , n,
such that we have cij 6= 0 and v is a number of such indices i for which cij = 0
for all j = 1, . . . , n.

Proof. The relation (5) is established along the main lines and ideas presented
in Filippova[7]. Indeed, from the funnel equation Panasyuk[20] we have

X(t0 + σ;u(·)) ⊆
⋃

x̃∈E(0,k+0
2
B−1)

(a0 + x̃+ σ(A0 +A1)(a0+

x̃) + σ(a0 + x̃)′B(a0 + x̃)) + σu(t0) + o(σ)B(0, 1). (11)

We remind that we may use here the property that at the boundary points x̃
of the ellipsoid E(0, (k+0 )2B−1) we have the equality x̃′Bx̃ = (k+0 )2 (for a more
simple case detailed explanations of the last property may be found also in
Filippova[7]). With this property and rearranging the terms in (11), we come
to the formulas (5)-(10).

Remark 2. We see here that the ellipsoidal estimates of the tube X(t;u(·)) for
each fixed control u(·) are under investigation here and therefore the parameters
of the estimation procedures depend on u(·). We can complicate the problem
by additionally assuming the presence of state constraints or by considering a
slightly more general class of uncertainty, e.g. in the coefficients of the matrix
of linear terms of the state velocities.

Remark 3. It follows from Theorem 1 that we can construct a discrete tube
E(â, Q̂;T, u(·)) with ellipsoidal cross-sections that solves Problem 1 and for
which we have the inclusion

X(T ;u(·)) ⊆ E(â+(T ), Q̂+(T );u(·)) + o(ε)B(0, 1). (12)

We emphasize that this discrete construction may be used as a basis for related
computational schemes and algorithms allowing to find the trajectory tubes
numerically.

Using the results Filippova and Matviychuk[9], we may derive the following
result.

Theorem 2. Let ε∗, u∗(·) be the optimal values of the Problem 2. Then we
have the relations

ε∗ = min
u(·)∈U

max
||l||=1

{r+(T ;u(·))(l′B−1l)1/2+

l′(a+(T ;u(·))− x∗)} = max
||l||=1

{r+(T ;u∗(·))(l′B−1l)1/2+ (13)

l′(a+(T ;u∗(·))− x∗)}.
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Proof. First, we find the minimal positive number ε such that the following
inclusion is true

E(a+(T ), Q+(T );T, u(·)) ⊆ B(x∗, ε),

or equivalently

ρ(l|E(a+(T ), Q+(T );T, u(·)) ≤ ρ(l|B(x∗, ε)), ∀l ∈ Rn.

Appling the result of Theorem 1, we get the relation

l′a+(T ) + (l′Q+(T )l)1/2 ≤ l′x∗ + ε||l||,

and from the above relations we conclude that

ε∗ = min
u(·)

max
||l||=1

((l′Q+(T )l)1/2 + l′(a+(T )− x∗)).

Taking into account the equality Q+(T ) = r+(T )B−1 we get the equations
(13).

The proposed results may be used as the basis for the development of com-
putational algorithms for solving applied problems of controlling and estimating
the movements of real systems operating in conditions of uncertainty and non-
linearity, in particular, in the fields of robotics, economics and finance, biology
and other fields. Related algorithms with computational examples (for lower
dimensional systems) that illustrate the approach may be found e.g. in Filip-
pova and Matviychuk[9]. In the next section a more complicated example of a
dynamical system in the space R3 is given and discussed.

4 Numerical simulations

Example. Consider the following control system ẋ1 = −x1 + x21 + x22 + 2x23 + u1(t),
ẋ2 = x2 + u2(t),
ẋ3 = x3 + u3(t),

(14)

Assume that U = B(0, 1), x0 ∈ X0 = B(0, 1) and t ∈ [0, T ] with T =
0.4. The projections of reachable sets X(t) together with related estimating
ellipsoids E+(t) = E(a+(t), Q+(t)) onto the planes of state coordinates (related
planes are (x1, x2), (x1, x3) and (x2, x3), respectively) are shown in Fig. 1-3 for
time grid t = 0.1; 0.15; 0.2; 0.25; 0.3; 0.35; 0.4 (we need to specify here that for
simplicity we put u(t) = 0 here, in other cases calculations and pictures are
similar).

The last Fig. 4 shows the upper estimating ellipsoid E+(t) = E(a+(t), Q+(t))
and the reachable set X(t) as they are in the related space R3 of state variables
{x1, x2, x3} for t = 0.4.

Note that the evaluating ellipsoid touches the reachable set (that is, the
external estimate is tight), which implies that without changing the structure
of parameters (for example, without changing the main matrix of coefficients),
it cannot be reduced to a smaller ellipsoid.
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Fig. 1. Projections Proj1,2E
+(t) of ellipsoids E+(t) = E(a+(t), Q+(t)) (blue color)

and projections Proj1,2X(t) of reachable sets (black color) X(t) at the plane of
{x1, x2, t}-coordinates.

5 Further theoretical directions and possible applications

Theoretical schemes and related numerical algorithms for evaluating trajectory
tubes and methods for solving control problems for set-valued motions based
on Theorems 1-2 can be developed further in many directions, among them we
note the following areas:

• studies of optimization and robust stabilization problems for uncertain non-
linear systems with impulsive control functions,
• problems of viability and control for dynamical systems described by non-

linear differential equations and differential inclusions,
• improvement and development of new numerical methods for estimating

set-valued motions of nonlinear dynamical systems (ensembles of trajecto-
ries) based on the proposed ideas for high-dimensional systems,
• research of new, more complex classes of nonlinearity in the dynamics of

controlled systems with uncertain factors,
• development of theoretical approaches to the estimation of set-valued mo-

tions using approximations for set-valued motions based on the use of dis-
crete schemes of the theory of differential inclusions with a large order of
accuracy.

The applications of the problems discussed here are in the nonlinear con-
trol and estimation theory and related nonlinear models with unknown but
bounded errors. Numerous application models can be noted here, in particu-
lar, real models in robotics, in transportation systems, in biology, medicine and
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Fig. 2. Projection Proj1,3E
+(t) of ellipsoids E+(t) = E(a+(t), Q+(t)) (blue lines)

and projections Proj1,3X(t) of reachable sets (black lines) X(t) at the plane of
{x1, x3, t}-coordinates.

economics. In these aspects, we would like to highlight, in particular, the stud-
ies and results obtained earlier by Bayen and Rapoport[2], Cecarelli et al.[4],
Koller et al.[11]), Filippova and Matviychuk[9], Kuntsevich and Volosov[13],
Malyshev and Tychinskii[17], Ovsyannikov[19].

6 Conclusion

The paper deals with the state estimation problems for uncertain dynamical
control systems for which we assume that the initial state is unknown but
bounded with given constraints. We consider here a special case of uncertainty
and nonlinearity when the matrix parameters in state velocities are unknown
but bounded.

The system nonlinearity under study is generated also by the presence of
bilinear terms and quadratic forms in related differential equations. The prob-
lem is reformulated as the control problem for the motion of related set-valued
states.

Using the ideas developed earlier for some classes of uncertain systems we
solve here the control problem with a new class of uncertainty and with a special
structure of nonlinearity. So we construct the external ellipsoidal estimates of
reachable sets for the system under study and find the solution of the related
optimization problem.
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Fig. 3. The projections Proj2,3E
+(t) of estimating ellipsoids E+(t) =

E(a+(t), Q+(t)) (indicated in blue lines) and projections Proj2,3X(t) of reachable
sets (indicated in black lines) X(t) at the plane of {x2, x3, t}-coordinates.
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Abstract. In this paper we present a new non–linear, discrete, dynamical system trying to 
model the historic battle of Salamis (480 BC) between Greeks and Persians. The model 
describes the most effective strategic behavior between two participants during a battle or 
in a war. Moreover, we compare the results of the dynamical analysis to Game Theory, 
considering this conflict as a dynamic game. 
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1 Introduction 

 
The model approaches short–term conflicts between two participants (players), 
where one is weaker than the other opponent. Also, the parameters (that we use 
in Eq. 1, see below) are the most crucial factors in order to highlight the optimal 
way to achieve a decisive victory. 
The solution of the equations of the dynamical system (called equilibrium point) 
shows what kind of behavior each player should adopt, i.e. an aggressive or 
defensive one. In this way, according to Game Theory, the optimum strategic 
behavior is called Nash Equilibrium [9]. 
One of the most representative games of Evolutionary Game Theory is the so-
called game “Hawk – Dove”, which was originally developed by Smith and Price 
[10] to describe animal conflicts and is quite similar to our attempt. We will 
present below the game and its results.  
The game “Hawk – Dove” has many applications in everyday life. There are two 

animals (or two players) fighting for the same resource. Each of them can behave 
either as a hawk (i.e. fight for the resource) or as a dove (i.e. abandon the resource 
before the conflict escalates into a fight). Individuals have a benefit B if they win 
and a cost C if lose.  
If a Hawk meets a Hawk, they will fight and one of them will win the resource; 
average payoff is (B-C)/2. If a Hawk meets a Dove, the Dove immediately 
withdraws, so the payoff of the Dove is zero, while the payoff of the Hawk is B. 
If a Dove meets a Dove, the one who first gets hold of the resource keeps it, while 
the other does not fight for it; average payoff B/2. The strategic form of the game 
is given by the payoff matrix:  
 

𝑃𝑎𝑦𝑜𝑓𝑓𝐻,𝐷 = (
(𝐵 − 𝐶)/2 𝐵

0 𝐵/2
) 
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2 Solution of the game “Hawk – Dove”  
We set the benefit B = 2 if a player wins, and the cost C = 1 if a player loses. 
Using the Gambit1 software (16.0.1), we find Nash equilibriums and the dominant 
strategy. 
 

 
Fig. 1: The results of "Hawk - Dove" game. 

 
Fig. 1 shows us the payoff matrix and the two Nash equilibriums. If both players 
behave as a Hawk, the one who first injures the other wins. We set the player 1 
starts and injures the player 2, thus player 1 wins. If someone behaves as a Hawk 
and the other behaves as a Dove, then the player with the aggressive behavior 
(Hawk) wins and takes all the resource. If both players behave as a Dove, then 
they share the resource. 
Regarding Nash equilibriums, there are two pure strategies. On the one hand, both 
players behave as Hawks and on the other hand, player 1 behaves as a Hawk and 
player 2 as a Dove. Moreover, we can observe that player 1 behaves as a Hawk 
in both cases and player 2 behaves either as a Hawk or as a Dove, but in each case 
player 1 wins. 
We should note that if player 2 injures first player 1, the Nash equilibriums would 
be different. 

 
1 McKelvey, Richard D., McLennan, Andrew M., and Turocy, T. L., 2014. 
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Fig. 2: Dominant Strategy. 

 
Fig. 2 shows the dominant strategy of the game, where player 1 behaves as a 
Hawk independently of the player’s 2 behavior (i.e. Hawk or Dove). Therefore, 

the first dominant strategy may not be effective, because both players behave as 
Hawks and player 1 wins the half of the resource and does not maximize his profit. 
Although, if the player behaves as a Hawk, knowing that the other player behaves 
as a Dove, then he takes all the resource (maximum profit). Thus, we believe that 
the second Nash equilibrium is more effective and optimum strategy. 
 
3 The Dynamical Model 
It is widely acknowledged that the military strategy is the combination of ends, 
ways and means [7]. In our attempt to study the strategic behavior of two warring 
parties, we developed a new non-linear discrete system of two equations based on 
the above phrase. The main objective of the model is to simulate the way by which 
the two opponents behave strategically, where the one is weaker than the other. 
At the same time, in Game Theory, the war is considered as a dynamic game 
where the strategies of the players are studied by calculating their optimal strategy 
(Nash equilibrium). In this research, we tried to compare the results of the Game 
Theory with those from the analysis of the discrete dynamical system. At the end 
of the analysis, the optimum and effective strategy for both participants (players) 
will be suggested. 
The model, which is applied in short-term conflicts and describes the strategic 
behavior of each participant, is given by Eq. 1: 
 

{
𝑥𝑡+1 = 𝑃𝑥 + 𝑇𝑁𝑥 − 𝐺 ∙ (𝐷𝑦 + 𝐸𝑥) ∙ 4𝑦𝑡 ∙ (1 − 𝑦𝑡)

𝑦𝑡+1 = 𝑃𝑦 + 𝑇𝑁𝑦 − (1 − 𝐺) ∙ (𝐷𝑥 + 𝐸𝑦) ∙ 4𝑥𝑡 ∙ (1 − 𝑥𝑡)
     [1] 

 
 
where: 
𝑥𝑡: The strategic behavior of any form of social organization x (state, country, 
etc.) at the time t. 
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𝑦𝑡: The strategic behavior of any form of social organization y (state, country, 
etc.) at the time t. 
𝑥𝑡+1: The optimal strategic behavior of any form of social organization x at the 
(next moment of) time t + 1. 
𝑦𝑡+1: The optimal strategic behavior of any form of social organization y at the 
(next moment of) time t + 1. 
We consider 𝑥𝑡 , 𝑦𝑡 , 𝑥𝑡+1, 𝑦𝑡+1 ∈  [0,1], because the logistic equation is defined in 
[0,1], which is derived from the study of biological populations reproduced in 
discrete time [6]. It’s the evolution of the population model of Malthus [8] and 
shows that the exponential growth cannot tend to infinity, but there is a critical 
point, i.e. a saturation. In other words, it is not possible for someone to win and 
the other to lose continuously. Also, each optimal strategic behavior, at the time 
t, affects the next move – strategic behavior, at the time t + 1, of the opponent. 
In addition, we can interpret the values of variables (and parameters, as shown 
below) as percentages or probabilities, which help us to explain the results; these 
are also explained through the Game Theory.  
Moreover, if the value of  𝑥𝑡+1 (or 𝑦𝑡+1, respectively) equals to 0, it indicates the 
fully defensive strategic behavior of participant x (or y respectively), while if it 
equals to 1, then it indicates the fully aggressive behavior of participant x (or y 
respectively). 
The parameters of Eq. 1 are the main and most important factors that could affect 
the strategic behavior of x (or y, respectively). In particular: 
The parameter 𝑷𝒙 represents the strength (economic, military, population, 
territorial) of x and 𝑷𝒚 is the strength of y, respectively. These two parameters 
indicate the substance of each form of social organization compared to the other. 
𝑻𝑵𝒙 and 𝑻𝑵𝒚 represents the Technological Naval capability and evolution of x 
and y, respectively. These two parameters are also defined in comparison with the 
technological capability and evolution of the other participant and describe the 
means mentioned by [7]. 
The parameter G represents the geographical location (geophysical terrain) of the 
area where the battle or the war is taking place. We believe that this is another 
part of the military strategy, namely the ways [7]. Trying to emphasize the 
importance of this parameter and how it can be an advantage or disadvantage for 
each participant, we set in the first equation as G and in the second equation as 1 
– G. The closer to the 1 the value of the parameter, the easier the geophysical 
terrain of the area is. 
The parameter 𝑫𝒙 represents the damages caused by x to y and respectively, 
𝑫𝒚 represents the damages that y brings to x. The damages which we refer to may 
be economic, territorial, military, etc. or even deception and damaging of the 
psychological part of the opponent. Moreover, these two parameters complete the 
last part of the military strategy, namely the ends [7]. 
The parameter 𝑬𝒙 represents the expenses of participant x and 𝑬𝒚 the expenses of 
participant y, respectively. In other words, these denote the preparation costs of 
each participant for a battle (or war), compared to each other. 
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All the parameters that have been presented above should belong to [0,1]. 

Namely, 𝑃𝑥 , 𝑃𝑦 , 𝑇𝑁𝑥 , 𝑇𝑁𝑦 , 𝐺, 𝐷𝑥 , 𝐷𝑦 , 𝐸𝑥 , 𝐸𝑦 ∈  [0,1]. 

In the next section, we present the dynamic analysis and the results from the 
application of Eq. 1 in naval battle of Salamis. 
 
4 The case of (naval) Battle of Salamis 
 
The naval battle of Salamis was an important battle of the second Persian invasion 
in Greece and has been estimated to being held on September 28th, 480 BC in the 
Salamis straits (in the Saronic Gulf near Athens). The two warring parties were 
the Greeks (Hellenic alliance) and the Persian Empire [2]. 
After the fall of Thermopylae, the Persians proceeded to Athens. The Greeks had 
been advised by the Oracle of Delphi, that only the "wooden walls" would save 
them and they considered that this referred to a fight in the sea [5].  
A few days before the battle, the meeting of the Greek admirals had to decide the 
geographic location of the battle. On the one hand, the Spartan General Evriviades 
proposed to fight in the Isthmus of Corinth, under the main argument that in case 
of failure it would be possible for them to continue to fight into the center of the 
Peloponnese. On the other hand, the Athenian General Themistocles insisted to 
fight in Salamis straits. He believed that if he forced the Persians to attack there, 
the numerous Persian ships couldn’t extent highlighting their dominance. 
Ultimately, the council considered that Themistocles’ argument was better and 

decided to support it [1]. 
The Greek fleet was estimated by Herodotus in 380 triremes and Aeschylus gave 
a round 300 triremes, but we can’t be certain for the exact number. On contrary, 
the Persian fleet was estimated in 500-600 triremes2. Herodotus describes the 
Persian ships as “better sailing”, when compared to the Greek fleet. This may be 

attributable to a combination of factors such as lightness of materials and structure 
of the ship, better seamanship and more extensive naval experience. The triremes 
of Hellenic alliance were heavier and more durable. However, Herodotus reports 
that these ships were equipped with an embolism, with which they sank the enemy 
ships. They used two attacking maneuvers: diekplous, (i.e. attack from the rear or 
sides with a sharp turn) and periplous, (flanking or enveloping move, which 
generally gave an extra benefit against superior numbers in open water). The 
purpose of both was to ram the enemy in the side. In this way, they achieved 
serious damages or even the complete destruction of the Persians ships. On the 
contrary, the Persian tactic was “ramming and boarding” [11]. 
 

 
2 Aeschylus, writing decades earlier, also gives 1,207 triremes, but Herodotus writes, 
shortly before battle took place, that the Persian fleet wasn’t much bigger than Greek. 

Because of a weather phenomenon (storms) 600 ships sank (400 at the coast of Magnesia, 
north of Artemisium and 200 in Euboea). 
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Fig. 3: The battle of Salamis. 

 Source: Burn, A. R. (1962). Persia and the Greeks, New York: Minerva Press 
 
At dawn (if the date of the battle was indeed 28th Sept.), the two fleets were ready 
for the naval conflict. Xerxes, sure of his victory, sat on a throne on mountain 
Aigaleo, to enjoy the war spectacle. The narrowness of the space and the limited 
extent of the sea did not allow the Persians to use the major of their force in the 
front line. Thus, the number of ships was approximately equal.  In this naval 
battle, the bravery and dexterity of the Greek fleet played an important role. They 
fought aggressively to defend their moral values and their freedom [1]. 
Herodotus reports that “the Greeks fought with discipline and held their 
formation, but the Persians did not seem to be following any plan, so things were 
bound to turn out for them as they did”. Also, Aeschylus mentions that 

Themistocles must be given the credit for their battle and the winning tactics. The 
turning point of the battle came as the Persians “suffered their greatest losses 
when the ships in their front line were put to fight and those following, pressing 
forward to impress the King (i.e. Xerxes) with their deeds, became entangled with 
them as they tried to escape”, as Herodotus comments [11]. 
The naval battle evolved rapidly and by the noon it was visible that the Greeks 
would win. The Persian fleet had crushed, while the Greek fleet continued to 
haunt them, killing the helpless, non–swimming soldiers. This brought the battle 
to an end, leaving the Greek force in full control of the straits [1]. 
When the battle was over, a Roman source mentions that Greeks lost more than 
40 triremes and Persians more than 200 ones [11]. The victory of the Greek force 
was of major importance, since they managed to cause the collapse of the Persian 
morale, which is evidenced by the abandonment of the battle. In addition, the right 
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decision of Themistocles for the geographic location of the naval battle was one 
of the most intelligent movements to bring the Greek victory.  
 
5 Applying the model in naval battle of Salamis – Approaching 
the reality 
 
Starting the dynamical analysis of the naval battle of Salamis, we set the initial 
conditions in Eq. 1, which represent as much as possible the historical events of 
the battle. Specifically: 

(a) We set Greeks as the weak participant – player (x) and Persians as the 
powerful participant – player (y). 

(b) The strength of Hellenic alliance, 𝑃𝑥 = 0.25 and the strength of Persian 
empire, 𝑃𝑦 = 0.8. 

(c) The technological naval capability of Greeks, 𝑇𝑁𝑥 = 0.7 and the 
technological naval capability of Persians, 𝑇𝑁𝑦 = 0.35. 

(d) The geographic location of the naval battle, G = 0.4, i.e. the Salamis 
straits, which are an advantage point for the Greek fleet. 

(e) The damage caused to Persian side was huge, so we set 𝐷𝑥 = 0.8  
and 𝐷𝑦 = 0.2. 

(f) The preparation costs of this battle for each participant: 𝐸𝑥 = 0.3, 𝐸𝑦 =

0.7, respectively. According to Kyriazis and Zouboulakis [5], 100 new 
Athenian triremes were built under the Athenian Naval Law of 
Themistocles. Each one cost one talent (6000 ancient drachmae), so the 
total cost was 100 talents (or 600.000 ancient drachmae). In 480 BC, the 
Athenian fleet was comprised of 200 triremes, equivalent to the two 
thirds of the total Greek strength. However, the Persian ships were 
similar in shape, so we assume that the cost of each ship was similar. 
Thus, it is obvious that the Persians spent more money to support their 
expedition to the Greek territories than the Greeks.  

With these initial conditions, we solve the system (Eq.1), by using the 
mathematical software Maxima3 (5.39.0), calculating the equilibrium points. 
Then, we study more extensively the behavior of the model and we present 
bifurcation diagrams and timeseries diagrams using the software E&F Chaos4. 
Solving the system (Eq.1), there are two equilibrium points: E1 (x* = 0.75, y* = 
0.475) and E2 (x** = 0.96, y** = 1.012). According to Game Theory, these two 
fixed points are considered as Nash Equilibriums [9]. Below, the stability of the 
fixed points will be examined.  
The Jacobian matrix is: 
 

𝐽 = (
0 0.8𝑦 − 0.8(1 − 𝑦)

3.6𝑥 − 3.6(1 − 𝑥) 0
) 

 
3 https://sourceforge.net/projects/maxima/files/Maxima-Windows/5.39.0-Windows/ 
4 E & F Chaos: written by Diks, C., Hommes, C., Panchenko, V., van der Weide, R., 
(2008). 
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We calculate the Jacobian matrix at the equilibrium point E1: 
 

𝐽∗ =  (
0 0.038

1.803 0
) 

The determinant of J* is det (J*) = 0.069 > 0. 
The trace of J* is trace(J*) = 0. 
The eigenvalues of J* is (0.264i, -0.264 i); two complex roots. 
The discriminant 𝛥 = 𝑡𝑟𝑎𝑐𝑒(𝐽∗)2 −  4 ∙ 𝑑𝑒𝑡(𝐽∗)=  0.2788 < 0. 
Therefore, the equilibrium point E1 is a stable – center. 
Studying the second fixed point E2, the Jacobian matrix at the equilibrium point 
is: 

𝐽∗∗ = (
0 0.82

3.314 0
) 

The determinant of J** is det (J**) =  2.718 < 0. 
The trace of J** is trace(J**) = 0. 
The eigenvalues of J** is (1.648,  1.6487); two real roots. 
The discriminant is 𝛥 = 𝑡𝑟𝑎𝑐𝑒(𝐽∗∗)2 −  4 ∙ 𝑑𝑒𝑡(𝐽∗∗) 10.874 > 0. 
Therefore, the equilibrium point E2 is a saddle point. 
Consequently, we accept the fixed point E1 (x* = 0.75, y* = 0.475) and reject E2 
(x** = 0.96, y** = 1.012), because the value of y** is greater than 1. 
Thus, we continue the analysis for the fixed point E1. Interpreting this equilibrium 
point, we confirm the aggressive (strategic) behavior of Greeks; since the value 
of x* is close to 1 and the mild (strategic) behavior of Persians; since they thought 
it would be an “easy win”. 
Indeed (historically), the courage of the Greeks, their technological naval skills, 
and the advantageous geographical location contributed in this aggressive 
behavior. As far as the Persians are concerned, their mild (strategic) behavior is 
due to the fact that they underestimated their enemy, since they regarded that the 
Greeks are an easy target, and they would achieve a decisive victory. 
Connecting the game “Hawk – Dove” to the naval battle of Salamis, player 1 (red) 

is “Persians” and player 2 (blue) is “Greeks” (Fig. 4). The Hellenic alliance had 

an aggressive behavior (Hawk) and the Persians behaved as a Dove. According 
the Nash equilibriums that have been mentioned above (See 2), the Greeks (player 
2) should behave as a Hawk (i.e. aggressive), regardless of Persian’s behavior, so 

as to win this battle. 
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Fig. 4: Time series diagram - x (Greeks; blue) and y (Persians; red). 

 
Fig. 4 shows us how the two warring parties behave (strategically). In particular, 
it represents the optimal strategic behavior of Greeks and Persians in Salamis 
straits for a time interval of 24 hours. We can observe an oscillation, at the 
beginning, until t = 6 h. (both lines) and then it is normalized and balanced. That 
means that the duration of the main battle was approximately 6 hours. Indeed, 
according to historical documents, the battle started at dawn (approximately at 
06:00 am) and the Greek victory was visible at noon. 
 

 
Fig. 5: Bifurcation Diagram for different values of G. 

x (Greeks; blue) and y (Persians; red). 

Fig. 5 presents the strategic behavior of Greeks (blue) and Persians (red) as the 
parameter G changes. We observe for the positive values of G, the blue line is 
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above the red until G = 0.64 (critical value) and for G > 0.64 the red line is above 
the blue. The increase of the value of parameter signifies the change of the 
geographical location (a more open sea), which becomes more difficult for Greeks 
and in contrary easier for Persian. Thus, we approve that if the location of the 
naval battle was in an open sea, the Persians would have a crucial advantage, 
which would possibly lead to win this conflict. 
Although we did not study the negative values of parameter G, we believe that 
there are some unpredictable geophysical factors (e.g. meteorological phenomena 
to influence the outcome of the conflict), which are surprisingly interesting. 
Specifically, we refer to weather conditions, such as air, ripple, etc., which can 
affect the geophysical terrain of the area. Due to these weather phenomena, period 
doubling bifurcations and chaos appear and we cannot predict what could happen 
in the battle for these values of G.  
 

 
Fig. 6: Bifurcation diagrams for different values of parameters 𝑇𝑁𝑥 and 𝑇𝑁𝑦 . 

 Fig. 6a: x (Greeks; blue) and Fig. 6b: y (Persians; red).  

Fig. 6 depicts the technological evolution and capability of x (Greeks; blue) and 
y (Persians; red), respectively. In the left diagram (Fig. 6a), for the negative values 
of parameter 𝑇𝑁𝑥, we can distinguish a pair of bubble bifurcations, while 
afterwards we have the well-known period-doubling scenario to chaos. A possible 
interpretation of this chaotic scenario is the uncertainty of Greeks in technological 
capability – first attempts to construct ships. The first ships, as Krasanakis [4] 
mentions, were floating planks and carved tree trucks only with oars. Since the 
ships were primitive, the situation was unstable (there is chaos in this range of 
values) because they were not capable to fight in naval battles. Later, the sails 
were invented, which gave high speed to ships, and they were consisted no more 
than wood but iron. For this reason, we have bubble bifurcations, which indicate 
the technological alternatives that existed for the construction of the ships. In the 
interval of positive values of 𝑇𝑁𝑥, there is stability with two fixed points. Here, 
it’s the beginning of better shipbuilding ability and new expertise ship 

construction. Finally, there is one equilibrium point which shows the better 
version of ships, of that period, namely Triremes. Triremes were wooden 
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warships which move either with sails or oars. Moreover, in the positive values 
of the parameter 𝑇𝑁𝑥, the increasing of the slope of the curve is visible, which, 
on the one hand, it means that in 480 BC the triremes were an innovation in 
shipbuilding and on the other hand, it shows the excellent naval capability of the 
Greeks. 
Persians, through the years, developed technological equipment because of their 
expansive mania to conquer Greece. Comparing the Figures 6a and 6b, it seems 
that Persians had a lower technological development than Greeks, since they 
focused more on land army than on warships. Their ships were mainly used 
as troopships rather than battleships [11]. 
 
Conclusions 
In this article, a new non – linear discrete model has been presented, which 
simulates the optimum strategic behavior of two warring parties for short–term 
battles. In addition, we try to compare this model with the game “Hawk – Dove”, 
applying this attempt in the naval battle of Salamis. Based on the results we have 
extracted, we (mathematically) proved the historical events of this conflict. 
Specifically, the Greek’s strategic behavior fits with the aggressive behavior of 
the Hawk and as well as the Persian’s strategic behavior fits with the more 
defensive behavior of the Dove in the game. Moreover, the estimated duration of 
the battle was proved as well as the dominance of the Greek fleet in the Salamis 
straits. Finally, the technological naval capability of the Greek alliance was able 
to cause serious damages to the opponent and led them to a crashing defeat. 
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Abstract. An experiment cannot refute mathematical theory, but decides whether a given 
theory is suitable for describing the indicated phenomena. I do not question the theory of 
chaos in the field of infinite and continuous spaces, but I present a hitherto unknown 
class (half-chaotic systems) of finite discrete networks in which this theory gives 
erroneous results and I explain why. It is easy to repeat the computer simulation 
experiments described here, also much wider descriptions are available. The widely 
known Kauffman hypothesis 'life on the edge of chaos' is based on the recognition made 
in random autonomous Kauffman networks. This recognition, supported by mathematical 
theory of chaos, gave an image in which systems can be either ordered or chaotic with a 
fairly fast phase transition between them. Only for parameters in the immediate vicinity 
of this phase transition, the changes have properties suitable for describing stability of 
adaptive evolution and typically modeled objects. This limitations for the variables are 
strong. However, modeled adapted systems are not fully random, they are usually stable, 
but the estimated parameters are usually ―chaotic‖-they place the fully random networks 
in the chaotic regime, far from the narrow phase transition. The half-chaotic network has 
such ―chaotic parameters‖, it simultaneously exhibits in similar share both small 

(ordered) and large (chaotic) reactions for small disturbances. The discovery of half-
chaos frees modeling of adapted systems from sharp restrictions; it allows to use ―chaotic 

parameters‖ and get a nearly stable system more similar to modeled one. It gives a base 

for identity criterion of an evolving object, simplifies the definition of basic Darwinian 
mechanism and changes ―life on the edge of chaos‖ to ―life evolves in the half-chaos of 
not fully random systems‖. 
Keywords: Kauffman networks, complex networks, chaos, life on the edge of chaos, 
phase transition to chaos, damage spreading. 
 
1 Introduction 
 
This is empirical work using computer simulation. It concerns dynamics in 
complex autonomous Kauffman networks that are finite and discrete, shows that 
current theory of deterministic chaos used for them, based on Lyapunov 
coefficient in infinite, continuous space, implies false expectations. Such a 
method is an approximation. It loses a few important phenomena present in such 
the networks, but absent in the infinite and continuous space. Current view is 
based on the assumption that networks are fully random, however, interesting 
phenomena concerning life occur in not fully random networks due to natural 
selection. Also limitation to Boolean networks in statistical investigation makes 
incorrect picture. Due to such the reasons, expectations of the theory that life is 
on the edge of chaos can be and are inadequate. 
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The description of the investigation and the arguments for introducing the half-
chaos given in this article is necessarily shortened and simplified. A much more 
extensive investigation and description is available in supplement (Gecow [9]) 
to this article. Wider versions of the article are available in preprints (Gecow 
[8]). The data (programs and its sources, results of simulations) analyzed here 
and additional explanations are available from the author on any request. 
 
2 Kauffman network and chaos in it 
 
The considerations concern the statistical stability of the deterministic Kauffman 
networks (Kauffman [11, 12, 13]). A node in such a network receives signals at 
the K inputs, converts them uniquely to the output signal called the state of the 
node, then sends it to other nodes by k outputs. Up to now, 2 (logical) signal 
states have been used. In the simplest case it was assumed the same probability 
and full randomness of connections and functions. K (called ―connectivity‖, see 
(Turnbull et al. [24])) was the basic variable for Kauffman.  
The conflict (Aldana et al. [1, 2], Turnbull et al. [24]) of a size of K in the 
Kauffman model and K estimated from nature is a problem solved here. 
Kauffman postulates that the natural property of the random ordered systems 
(‗order for free‘ Kauffman [14]) is the source of stability, but then K should be 
extremely small  (K≤2) (Derrida and Pomeau [4]). The attempts to prove that 
the real genetic network is ordered (Serra et al. [19, 20], Shmulevich et al. [22]) 
assume such a source of stability. Different circumstances allowing for greater 
K in the ordered phase were indicated (p.48 in Aldana et al. [1]), such as a 
significant difference in probabilities of logical states (Derrida and Pomeau [4]), 
or deviation from the randomness of the function (canalizing Kauffman et al. 
[15]), but these and other suggestions are not satisfactory for many reasons 
(Gecow [7]). 
Synchronous computing is used, i.e. the states of nodes from the discrete time t 
are input signals and arguments of function of other nodes, and the results of 
these functions are node states at the next moment (t+1). Considerations have 
been limited to autonomous systems – they do not take the signal from the 
environment. Determining the states and functions of all nodes and the 
connections between nodes uniquely determines the trajectory - consecutive 
states of the whole network (sets of states of all nodes). 
Same K for all N nodes of the network are taken. The size of a change in a 
network function at time t after a small disturbance is measured by the number 
A (from Avalanche Serra et al. [20]) of the nodes, which have a different state 
from the pattern network - identical but without disturbance. The value d=A/N 
is called damage, its distribution characterizes stability and is the most 
important result (Fig.1a,b). 
The main characteristic of the chaotic  behavior of dynamical systems is high 
sensitivity to initial conditions, leading to maximally different effects for very 
similar initial conditions. I use the term ‗chaos‘ in such the meaning, similarly 

as Kauffman [13] does. For chaotic Kauffman networks a small initiation of 
damage typically causes a large avalanche of damage which spreads onto a big 
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part of the discrete and finite system and ends at a Derrida equilibrium level 
(Derrida and Pomeau [4], Gecow [7], Derrida and Weisbuch [5]), which is a 
maximal lose of information about previous system. The existence of this 
limitation is the main difference between this ‗chaos‘ and the more commonly 

taken definition (Schuster [21]) used for continuous variables on infinite space. 
The term ‗chaos‘ is not reserved for one of those separate areas. The distribution 
of damage size is the experimental base to classify particular system of 
Kauffman network as chaotic or ordered using levels of damage equilibrium 
calculated from Derrida‘s annealed approximation. 
According to my previous (Gecow [7]) suggestions, here I also study a larger 
number of s (>2, usually 4) of equally probable signal states, which in random 
networks for every sensible K (≥2) always gives chaos. Attempts to introduce 

more signal states already exist (Luque, F.J. Ballesteros [17], Sole et al. [23]), 
but they assume the possibility of an ordered phase for the random network, that 
these states cannot be equally probable.  
Several types of networks are considered. They differ in the rules of their 
creation and k distributions: sf (scale-free Barabási,et al. [3]), er (classical Erdős 

and Rényi [6] "random"), and ss (single-scale). In the figures, the second letter 
of these shortcuts indicates the network type. It is also looked after the node 
functions are correctly random, but this assumption cannot always be fully met, 
so the impact of the derogations is checked. The vector type,s,K is the basic 
variable here. Further, parameters s,K, which in the case of a random system 
give chaos, we will refer to in short as "chaotic". 
 
3 Main results in brief, half-chaos 
The research has shown that among the systems with chaotic parameters, the 
strongly increased stability desirable in modeling many interesting objects is in 
not fully random systems with short attractors, here called half-chaotic. 
Functioning of such the system after a small disturbance is quite different 
(chaotic) or very similar (ordered), comparing to a undisturbed system. Medium 
damage is practically nonexistent. Both of these options occur in the same 
system similarly often, which is surprising, since it was previously thought that 
the system may be either chaotic or ordered. As addition to the short attractor, 
this ratio is influenced (Gecow [8]) among other  by negative feedback, 
modularity, and ‗in-ice-modularity‘ detected in these studies. 
Kauffman is trying to describe living systems and similar using several easy to 
show and the main parameters of his model, he simplifies the rest of them 
assuming their randomness, but natural selection works on all possible 
parameters destroying their randomness. Indeed, it is difficult to imagine the 
possibility of the existence of half-chaotic systems. In fact, after the system is 
drawn, it is either chaotic or ordered, and the set of random systems contains all 
the possible ones. Only near the phase transition the changes of function can 
statistically be small, and such are necessary for the evolution of modeled 
objects, as Kauffman stated in the well-known hypothesis that "life is on the 
edge of chaos and order." In the interpretation of the results of this approach, it 
has not been seen that the statistical absence of intermediate systems does not 
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imply a small number of such systems. There are a lot of half-chaotic systems, 
but their share is negligible, because chaotic systems with given parameters 
(e.g., K) are radically more - for larger N not imaginable many. In light of the 
results, it must be stated that "life evolve in the half-chaos of not fully random 
systems". 

 
4 A point attractor system is half-chaotic 
 
Demonstration of the existence of half-chaotic systems can be made simply by 
indicating such systems, e.g. in the form of an algorithm for their construction. 
A good and simple example is a point-attractor system. You can get this system 
from the random system slightly change the function of nodes: for current input 
signals, insert as the function value the current state of this node. This is a very 
slight deviation from randomness. By investigating the various static statistic 
characteristics of such a network, it is difficult to detect that this is a unique 
network. This uniqueness is not only because a point attractor, but it is a half-
chaotic network. 
The distribution of the damage size in the half-chaotic network has two peaks - 
the left of very small changes of network function and the right - of the large 
changes in the function. Between them is a big gap - intermediate changes 
practically do not occur (Fig.1a). This allows us to naturally determine the 
"level of order" q as the content of the left peak. This q is the most important 
characteristic of the damage distribution (Fig.1c, 2a,f), which clearly 
distinguishes the half-chaotic systems (J in Fig.2f, Fig.1c without X, Fig.3a,b) 
from the chaotic ones (X in Fig.1c, 2f, 3c). The right peak was predicted by 
Derrida (Derrida and Pomeau [4], Derrida and Weisbuch [5], Gecow [7, 8]) in 
the annealed approximation model - it is a chaotic reaction, the maximal loss of 
information about earlier function. It can be said that the system ceases to be 
itself from before of the disturbation, completely loses its adaptation (if it was 
adapted), or more generally - purposeful action. 
Disturbation initiating of network function change can be very different. In my 
main study I used permanent change of node function in one node only for one 
(initial) state of inputs. For s = 4 we can change the value of the function to 3 
other values. In another investigation I use addition and removal of node. 
The natural question arises: Will leaving such disturbing changes, modeling the 
evolution of the object, results in the loss of the half-chaos? It turns out that 
leaving only the changes that triggered a minor change in the range of  left peak 
allows for a long evolution without losing half-chaos. This feature, termed the 
‗evolutionary stability of the half-chaos‘, is included into definition of the half-
chaos. The system is changing slowly - it remains "self", although it evolves and 
may lose the point attractor. Changes in the network functioning are small but 
not negligible. However, the attractor typically remain small. 
Accepting only minor changes in the naturally separated left peak is the real 
basis of the ‗natural identity criterion‘. Acceptance of one initiating change 

giving a chaotic change of function (from the right peak) causes (experiments X 
in Fig.2f, 1c) that the feature of half-chaos disappears, and the system becomes 
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typically chaotic. It is a good model of death, which is necessary for elimination 
in the Darwinian basic mechanism. Simultaneously, elimination is the 
opposition of identity continuity defined by the left peak. It simplifies and 
clarifies the definition of the Darwinian mechanism and allowing it to be used to 
define life. 
 

 
 
Fig.1. The main result.  a, b – distribution of damage size,  a – full, b – left peak .  
A – Avalanche, number of different node states at maximal t (tmx) in disturbed and 
undisturbed networks. A is averaged over the last 50 timesteps. In the networks there are 
N = 400 nodes, and damage, d = A/N. The first character of the curve description (‗d‘, 

‗4‘, ‗5‘, ‗6‘, ‗7‘) indicates the experiment, while the second shows the network type (‗f‘ – 
scale-free, ‗r‘ – Erdős-Rényi ‗random‘). Only the networks in experiment ‗d‘ are Boolean 

(number of equally probable signal  variants,  s = 2)  but  connectivity (number of input 
links), K = 4. In all remaining experiments, s = 4 and K = 3. Fully random networks with 
such values of parameters s and K are chaotic (only the right peak exists), but here, the 
left peak exists and its share is not negligible (see q in c). Such a picture, with two peaks, 
is for each particular network. They are neither ordered nor chaotic; thus, I call them 
‗half-chaotic‘. The results from a few hundred networks for each experiment are 
summarized here. Errors are not calculated due to the presence of many types of rare 
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causes, which make such calculation inadequate—the smoothness of the curves is 
enough. 
c – Half-chaos – fractions of ordered events (q) and chaotic. In the range of q an order 
resulting from the absence of output in some nodes (k = 0) in the network er is isolated as 
yellow. For ‗d‘ and X (from ‗7‘) there are no evolution, the results concern the network 
immediately after generation of half-chaos, but for X also after acceptance of one chaotic 
change, which gives a typical chaos (see also Fig.2f). In the remaining methods (‗5‘, ‗6‘ 

and ‗7‘) result is a sum of the results of 4 stable set M, as in a,b, (see Fig.2). s,K = 4,3 
except ‗d‘ where s,K = 2,4. 
 

 
 
Fig.2. The stabilization of basic parameters during evolution is the main argument 
for evolutionary stability of half-chaos. 
The similarity of half-chaos based on  in-ice-modularity, despite the differences in the 
way (‗5‘,‘7‘) of it obtaining. For ‗6‘ it is no  in-ice-modularity, then lack ‗6‘ in (c,d,e).  
Sets J, M1, M7, M13, M19 and M20 of initiation are full - no blocking of reverse 
changes (‗5-7‘, N=400). Initial set J and M1, see (c,d,e) are not yet stabilized, therefore 
they are not summarized in Fig.1. 
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a - Stability of parameter q (degree of order of the system, the contents of the left peak in 
Fig.1) shows lack of moving towards the chaos (smaller q) during the evolution. 
b - The average time of five latest explosion to the chaos does not grow. In the chaotic 
networks such explosions (Fig.3c) happen almost until the not yet exploded processes 
exist. 
c - The average size of the ice and of the local clusters. In ‗6‘ there is no ice. 7f has a 
specific derogation, but it also stabilizes.  
d - The average number of global clusters.  
e - The average number local clusters.  
f - Average q(t) in sets of J and X, starting after construction  of  in-ice-modular system 
(‗7‘). In this experiment (part of ‗7‘) N=800, tmx=2000, no evolution and M sets. J gives 

a typical picture for half-chaotic systems - q quickly stabilizes and is high. X starts after 
accumulation one disturbing permanent change, which has given large damage 
avalanche. Here q(t) drops up to tmx and probably further, but not for er due to k=0.   
 
5 Short attractor and  in-ice-modularity 
 
A more detailed analysis of the mechanisms for maintaining the increased 
stability of systems with chaotic parameters has shown that the basic condition 
of the statistically significant presence of the left peak in the damage 
distribution is a sufficiently short attractor. It allows to limit the number of 
different circumstances in which secondary initiations (disturbations) appear in 
effect of encountering an input state by a node for which the value of the 
function was changed. For one expiration of the damage is relatively probable, 
but the fade out of each of the many independent disturbations is practically 
impossible. 
It was checked by the method ‗6‘ that such the condition is sufficient to obtain a 

half-chaos, but the shape of the left peak (Fig.1b) was significantly different 
from obtained starting from point attractor (method ‗5‘). Practically it contains 

only lack of functional change (A = 0) and therefore such system is not suitable 
for modeling the evolution of objects like administrative units, technological 
processes, technical constructions and living organisms. 
The differences in the half-chaos mechanisms obtained starting from the point 
attractor (‗5‘) and from the small attractor (‗6‘) were investigated more in 

details. It turned out that the mechanism in the first case is very similar to the 
indicated by Kauffman in the vicinity of the phase transition – ―small lakes of 

activity in the ice‖ (originally: ―unfrozen islands‖) (Kauffman [12]). Kauffman 
calls ice nodes that do not change their state. Starting from the small attractors 
(‗6‘) practically does not create ice. Point attractor system is a completely 

frozen, disturbation unfreezes small subset of nodes (Fig.2c), and inside it 
attractor is usually small. After accumulating such the change, the next 
disturbation unfreezes another independent piece (clusters in the figures), and an 
image similar to modularity is created. I called it  in-ice-modularity. In-ice-
modules are also the classic modules, but this is only one, supporting, but less 
important factor. The main property of the  in-ice-modules is the activity - 
changes of the states of forming them nodes. The ice surrounds them and 
isolates  from  the  other  in-ice-modules.   In-ice-modules  are  the  result  of the 
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Fig.3. Half-chaos and chaos in the presentation of A(t) from simulation of a full set 
of small permanent disturbations.  
A - number of the nodes states different than in the not disturbed system. t is a number of 
steps of network calculation from damage initiation. The details should be watched in 
enough magnification - they were presented on the screen pixels. Showed examples are 
typical for all experiments or network types. Here s =4, it indicates level of Derrida 
equilibrium near A=290 (see Fig.1a). Typical N = 400, tmx = 1000 is used, so the 
rectangle has a dimension of 400*1000 pixels. After each of 1200 initiation A(t) is drawn 
with a continuous black line. As can be seen, the transition to chaos in the vicinity 
Derrida balance is rapid in several to over a dozen steps, where A increases drastically, 
so I call it "explosion." Threshold is here chosen at A=150 which is marked in red. It is 
used for q calculation. After the end of initiation set, the red curve q(t) - the share of 
processes that in the time t did not cross the threshold, was added to the figure. q=1 for 
A=N. Red description of the left has been added for readability. Blue line describe the 
share of processes that currently have A = 0, i.e. damage fade out.  
a – Half-chaos. The red curve q(t) quickly stabilizes at a high level near q=0.4. (See 
Fig.2f.) In the lower part of the graph many trajectories are drawn (there are 476 of 
1200). The last explosion occurs at t=18. These, and lot of other data are presented on the 
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screen and saved, they are described in details in (Gecow [8, 9]). Blue line is much lower 
than red. It means, that most of stable processes are not a case of damage fade out (A=0). 
b – A premise of  in-ice-modules. The lower part of the similar to (a) image, but a case 
with larger fluctuation. The q level is here high, near q = 0.55. A distribution of damage 
size lower than threshold 150 was studied on section from t = 600 to tmx (purple curve 
on the right frame). It is one of ways to see the  in-ice-modules existence. The seen 
significant peak is probably an effect of stimulating of one hypothetical large  in-ice-
module.  
c – Chaos. Typical form for sf network type, for er and ss explosions typically end 
earlier. Here one process has not  yet exploded at tmx. Experiments X  (see Fig.2f) have 
also such the picture. Here, q(t) is steadily decreased until not 'exploded' processes exist. 
For the chaotic system processes which fade out (A=0, blue line) are the main part of not 
yet exploded which build q, the secondary initiations lead typically to their explosion. 
 
functioning defined by the functions and states of nodes in a given structure. 
This state really gives the half-chaos based on small attractors, but they are local 
attractors in  in-ice-modules, and their assembly can give quite a large global 
attractor for the whole system. Local clusters (present in one process after one 
permanent change) are defined as sets of nodes with the same period of state 
changes. There are usually several local clusters (Fig.2e) at the same time, and 
ice occupies most of the network (Fig.2c). In the method ‗6‘ there is usually one 

cluster covering almost the entire network, there is lack of  in-ice-modules but 
the classic modules are present like in method ‗5‘. In one process of evolution 

very close clusters are frequent, they freeze for many initial changes and 
reappear, often changing their period. A set of such similar clusters in the 
process of evolution of a given network is called global cluster (Fig.2d), but its 
definition is fuzzy and abounds in many different phenomena difficult to 
resolve. Among them are assembling and disintegration of clusters.  
An algorithm is developed to create a  in-ice-modular system based on such a 
description, in the networks with random structure, without starting from the 
point attractor. It effectively gives half-chaos (‗7‘) with similar properties 

observed when starting from the point attractor (‗5‘). It is unnecessary to force  
the small attractors in the  in-ice-modules.  
 
6 The supports for stability 
 
It is generally believed that the stability of the various systems results from 
homeostasis based on regulation by negative feedback. Kauffman [14] pointed 
instead to the property of ordered phase (order for free) as the most important 
reason, but for it extremely small K should be expected. Searching for 
mechanisms for increasing the stability of systems with chaotic parameters I 
began with an attempt to show that increasing the share of negative feedback is 
sufficient (Gecow [8]). However, this claim turn out to be wrong, a short 
attractor is necessary, but negative feedback indeed (Gecow [8, 9]) causes very 
strong support for stability. Narrowing of functions and always present 
modularity also are insufficient, but similarly supportive. However, research on 
modularity is rather superficial and the subject needs to be deepened. 
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7 The basic details of simulations 
 
Simulation studies and their analysis include many important details that are 
unfeasible to include in this article. They are described in more than 200 pages 
of reports (Gecow [9]), only selected of them in article (Gecow [8]). Only basic 
ones are listed here.  
The typical size of the studied network is N=400 nodes, but experiments with 
N=800 and even 4000 also exist. The basic parameters are: s - the number of 
equally probable states of the signal, uniquely s=2 (the Boolean network 
denoted by ‗d‘ in Figs.1) or usually s=4; and K - number of inputs to the node, 
constant for the whole network, K=4 for s=2 and K=3 for s=4. A(t) - the number 
of node states different from the undisturbed pattern at a given moment t is the 
principal measured value. This value is shown in Fig.3 and is also used (Figs.2f, 
3) to determine q(t). The particular system is calculated at tmx discrete time 
steps t after disturbation, and then at t=tmx, more adequate value for the final 
results (Fig.1) is recorded as averaged A over the last 50 counting steps t. 
Typically, tmx is 1000, but longer stretches are also used, even up to 20000. The 
tmx value was arbitrarily determined on the basis of preliminary simulations, 
but it is checked whether the increase would not change the results. 
Network types sf, ss and er are used in experiments described here. The second 
letter indicates the network type in the figures. The number of networks with 
parameters type,s,K in a particular final simulation is usually about 600, it 
happens 100, but often experiments were repeated in a similar way, giving a 
much greater certainty. Due to the strong influence of various factors, often 
sporadic, formal errors in the obtained results are not calculated, judging such a 
calculation as clearly inadequate and misleading. This problem is limited to the 
similarity of results from the similar simulations and the visual evaluation of 
fluctuations. The evolution of the experiments ‗5‘, ‗6‘, ‗7‘ has many additional 

constraints to increase credibility. They are similar in these three cases for the 
basic results, but moreover, a series of simulations of other rules are performed. 
After initial set of initiation (J) there are 20 sets M, in most of them the reversal 
of the accepted changes are blocked. This results in the exclusion of a large 
number of initiations from the measurements and leads to a significant 
slowdown of evolution. After several such set, the reversal is allowed (M1, M7, 
M13, M19, M20), assuming that the change has already another circumstances. 
It also allows to correct measure of various phenomena that illustrate evolution 
(Fig.2). Since the attractor is decreasing spontaneously, making it difficult to 
move away from the point attractor, it is also forbidden to reduce the global 
attractor to less than 7, and in the M20 (at ‗5‘, ‘6‘, ‘7‘) to reduce the attractor. 

Also, the point of initiation of damage is shifted by t=50 after each accumulated 
change, because the magnitude of this shift turn out to be a significant factor.  
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8 Conclusion 
 
Various complex objects adapted by natural selection or humans were attempted 
to model by dynamic complex networks. For that, Kauffman's Boolean 
networks are perfect. It was estimated that mean connectivity K should be 
clearly larger than 2. However, such networks, according to current views, 
should be chaotic, and this did not match the features of modeled objects. The 
discovery of the half-chaos in which K and s can take larger values than the 
extreme 2, and yet in the model remains the order, removed from this modeling 
sharp constraints, which until now are the typical basis of many considerations   
(Nghe et al. [18], Serra et al. [19, 20], Kauffman [12, 14], Aldana et al. [1, 2], 
Luque and Ballesteros [17], Sole et al. [23], Kauffman et al. [15], Shmulevich et 
al. [22], Iguchi et al. [10], Villani et al, [25], Kinoshita, [16]). This opens the 
door to adequate models with complex networks. 
Kauffman's well-known hypothesis (Kauffman [12, 13]) "lives on the edge of 
chaos and order" as a result of deepening the model and finding the half-chaos is 
here modified to "life evolves in the half-chaos of not fully random systems". 
This change entails deeper interpretive conclusions, indicates the natural basis 
of the identity of the evolving object and the model of its death necessary for 
Darwinian elimination. 
Of course, such a brief summary is necessarily a great simplification. Basing the 
conclusions on the finite network simulations in complex nonlinear phenomena 
is well-justified, but is in conflict with the habit of defining chaos through 
Lyapunov exponent, whose analog for networks (coefficient of damage 
propagation (Gecow [7]) and eq.2.3 in (Aldana et al. [1])) in the case of half-
chaos turns out to be misleading. The presented results can be treated as a guide 
to developing more advanced methods, but in the case of finite, dynamic 
complex networks, it will not necessarily be a more comfortable and more 
relevant description. 
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Albert Einstein and the doubling of the deflection of light 

 

Jean-Marc Ginoux1 

 

 

One of the three consequences of Einstein’s theory of general relativity was the curvature of 

light passing near a massive body. In 1911, he published a first value of the angle of 

deflection of light, then a second value in 1915, equal twice the first. In the early 1920s, when 

he received the Nobel Prize in Physics, a violent controversy broke out over this result. It was 

then disclosed that the first value he had obtained in 1911 had been calculated more than a 

century before by a German astronomer named Johann von Soldner. The aim of this article is 

therefore to compare the methods used by Soldner and then by Einstein leading to this first 

value and to explain the importance of the doubling of this value in the framework of 

Einstein’s theory of gravitation.   

 

A. The Genesis of General Relativity and the Curvature of Light 

 

Two years after the publication of his article on special relativity, Albert Einstein considered 

generalizing his theory. Thus, in 1907, he wrote an article entitled “Relativitätsprinzip und die 

aus demselben gezogenen Folgerungen” (“On the Principle of Relativity and the Conclusions 

Drawn from it”), at the request of Johannes Stark, editor of the Jahrbuch der Radioaktivität, 

in which he presented for the first time one of the consequences of his theory. In paragraph V. 

entitled “The Principle of Relativity and Gravitation”, he wrote: 

 
                                                 
1 Laboratoire des Sciences de l’Information et des Systèmes, LIS, CNRS, UMR 7020 – Archives Henri Poincaré, 
AHP, CNRS, UMR 7117. 
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“From this it follows that those light rays that do not propagate along the  -axis 

are bent by the gravitational field2…” 

 

At that time Einstein thought that the effect of gravitational field on rays of light was too 

weak to be detected as evidenced by his conclusion: 

 

“Unfortunately, the effect of the terrestrial gravitational field is so small according 

to our theory (because of the smallness of 
2

x

c


) that there is no prospect of a 

comparison of the results of the theory with experience3.” 

 

During the autumn 1911, Einstein became full professor of theoretical physics at the 

German Charles-Ferdinand University in Prague. Einstein lived more than a year at number 7 

Leniscka Street with his first wife Mileva Maric and their two children Hans Albert and 

Eduard. Here he wrote a second article, considered as the starting point of his theory of 

general relativity: “Einfluss der Schwerkraft auf die Ausbreitung des Lichtes” (“On the 

influence of Gravitation on the Propagation of Light”) in which he gave a first value of the 

deflection of light passing near a massive body. In paragraph 4 entitled Curvature of light rays 

in the gravitational field, he wrote: 

 

“By equation (4) a light-ray passing by a heavenly body suffers a deflection to the 

side of the diminishing gravitational potential, that is, to the side directed toward 

the heavenly body, of the magnitude 

 

                                                 
2 Albert Einstein, “Relativitätsprinzip und die aus demselben gezogenen Folgerungen” (“On the Principle of 
Relativity and the Conclusions Drawn from it”) Jahrbuch der Radioaktivität, 4, 411–462, 1907.  
3 Ibid. 
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where k denotes the constant of gravitation, M the mass of the heavenly body, Δ 

the distance of the ray from the center of the body (and r and   are as shown in 

Fig. 3). A light-ray going past the Sun would accordingly undergo deflection by 

the amount of 4.10−6 = 0.83 seconds of arc. The angular distance of the star from 

the center of the Sun appears to be increased by this amount. As the fixed stars in 

the parts of the sky near the Sun are visible during total eclipses of the Sun, this 

consequence of the theory may be compared with experimental evidence4.” 

 

Then, he added: 

 

“It would be urgently wished that astronomers take up the question here raised, 

even though the considerations presented above may seem insufficiently 

established or even bizarre. For, apart from any theory, there is the question 

whether it is possible with the equipment at present available to detect an 

influence of gravitational fields on the propagation of light5.” 

 

In 1913 Einstein was appointed, on the recommendation of Marie Curie and Henri Poincaré, 

to a chair of mathematical physics at the Swiss Federal Polytechnic in Zürich (later the 

Eidgenössische Technische Hochschule, ETH) where he had studied a few years earlier. The 

following year, he joined Berlin to become director of the Kaiser-Wilhelm Institute of Physics, 

                                                 
4 Albert Einstein, “Einfluss der Schwerkraft auf die Ausbreitung des Lichtes” (“On the influence of Gravitation 
on the Propagation of Light”), Annalen der Physik, 4(35), 898–908, 1911. 
5 Ibid. 
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and university professor. On November 1915, he submitted four papers to the journal of the 

Prussian Academy of Sciences6. Then, he published in 1916 in Annalen der Physik a 40-page 

article entitled “Die Grundlage der algemeinen Relativitätstheorie” (“The Foundations of the 

General Theory of Relativity”) considered as the final and complete version of his theory of 

general relativity. In the last section he presented the three observable physical consequences 

of his theory and in particular the curvature of the light rays and explained that this latter 

consequence could be verified by exact astronomical experiments: 

 

“From this it follows that the spectral lines of light reaching us from the surface of 

large stars must appear displaced towards the red end of the spectrum*. 

 

*According to E. Freundlich, spectroscopical observations on fixed stars of 

certain types indicate the existence of an effect of this kind, but a crucial test of 

this consequence has not yet been made7.” 

 

Then, he provided a second value of the deflection of light passing near a massive body: 

 

“We examine the curvature undergone by a ray of light passing by a masse M at 

the distance Δ. If we choose the system of co-ordinates in agreement with the 

                                                 
6 Albert Einstein, “Grundgedanken der allgemeinen Relativitätstheorie und Anwendung dieser Theorie in der 
Astronomie” (“Fundamental Ideas of the General Theory of Relativity and the Application of this Theory in 
Astronomy”), Preussische Akademie der Wissenschaften, Sitzungsberichte, 315, 1915, “Zur allgemeinen 
Relativitätstheorie” (“On the General Theory of Relativity”), Preussische Akademie der Wissenschaften, 
Sitzungsberichte, 778-786 & 799-801, November 4, 1915, “Erklärung der Perihelbewegung des Merkur aus der 
allgemeinen Relativitätstheorie” (“Explanation of the Perihelion Motion of Mercury from the General Theory of 
Relativity”), Preussische Akademie der Wissenschaften, Sitzungsberichte, 831-830, November 18, 1915, 
“Feldgleichungen der Gravitation” (“The Field Equations of Gravitation”), Preussische Akademie der 
Wissenschaften, Sitzungsberichte, 844-847, November 25, 1915. 
7 Albert Einstein, “Die Grundlage der allgemeinen Relativitätstheorie” (“The Foundations of the General Theory 
of Relativity”), Annalen der Physik, 4(49), 769–822, 1916. 
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accompanying diagram, the total bending of the ray (calculated positively if 

concave towards the origin) is given in sufficient approximation by8 

 

2

M
B







 

 

According to this, a ray of light going past the sun undergoes a deflexion of 

1.7’’…” 

 

It is very surprising to notice that this second value of the angle of deflection of light provided 

by Einstein is equal twice the first. It will be learned some years later that the first value 

provided by Einstein in 1911 was in fact identical to that published a century earlier by the 

German physicist and astronomer Johann Georg von Soldner9. According to Abraham Pais : 

 

“An Argentinian eclipse expedition which had gone to Brazil in 1912 and which 

had the deflection of light on its experimental program was rained out. In the 

summer of 1914, a German expedition led by Erwin Freundlich and financed by 

Gustav Krupp, in a less familiar role of benefactor of humanity, headed for the 

Crimea to observe the eclipse of August 21. (Russian soldiers and peasants were 

told by their government not to fear evil omens: the forthcoming eclipse was a 

natural phenomenon.). When the war broke out, the party was warned in time to 

                                                 
8 The value 28 K c   where K represents the Cavendish’s constant.  
9 This fact has been reported since by many historians of science such as Thomas Glick, The Comparative 
Reception of Relativity, Boston Studies in the Philosophy and History of Science, Vol. 103, Springer Netherlands, 
Dordrecht, D. Reidel, 1987; Jean Eisenstaedt, « De l’influence de la gravitation sur la propagation de la lumière 
en théorie newtonienne. L’archéologie des trous noirs », Archive for History of Exact Sciences, Vol. 42 (4), 
(September 1991), p. 315-386. Jürgen Renn, The Genesis of Relativity, Vol. 1-4, Boston Studies in the 
Philosophy and History of Science, Vol. 250, Springer Netherlands, Dordrecht, D. Reidel, 2007; Milena Wazeck,  
On Einstein’s opponents: the public controversy about the theory of relativity in the 1920s, Cambridge; New 
York: Cambridge University Press, 2014. Nevertheless, neither of these references contains any mathematical 
analysis nor comparison of Soldner’s and Einstein’s results.  
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return and some did so. Those who hesitated were arrested, eventually returned 

home safely but of course without results. Frustration continued also after 

November 18, 1915, the day on which Einstein announced the right bending of 

1”74. […]  

An opportunity to observe an eclipse in Venezuela in 1916 had to be passed up 

because of the war. Early attempts to seek deflection in photographs taken during 

past eclipses led nowhere. An American effort to measure the effect during the 

eclipse of June 1918 never gave conclusive results. It was not until May 1919 that 

two British expeditions obtained the first useful photographs and not until 

November 1919 that their results were formally announced10.” 

 

When the armistice was signed on November 11, 1918, two expeditions were mounted, one to 

Sobral in Brazil, led by Andrew Crommelin from the Greenwich Observatory, and one to 

Principe Island off the coast of Spanish Guinea, led by Eddington. After the return of the 

expeditions, data analysis began. Einstein could not hide his enthusiasm in the expectation of 

the results. On September 22, 1919, Hendrik Lorentz sent a telegram to Einstein announcing: 

 

“Eddington found stellar shift at solar limb, 

tentative value between nine-tenths of a second and twice that.” 

 

On the afternoon of November 6, 1919, at Burlington House in Piccadilly, the Astronomer 

Royal, Sir Frank Dyson, had the honour of presenting the results of the two expeditions. He 

described in detail the equipment, the photographs, and the complexities of the computations. 

His conclusion, however, was simple.  

                                                 
10 Abraham Pais, Subtle Is the Lord: The Science and the Life of Albert Einstein, Oxford University Press, 1982, 
p. 304. 

238



 7

“The results of the expeditions to Sobral and Principe leave little doubt that a 

deflection of light takes place in the neighbourhood of the sun and that it is of the 

amount demanded by Einstein’s generalized theory of relativity.” 

 

Thus, it was considered that the astronomical observations had ‘‘demonstrated’’ the curvature 

of space. The day after, Einstein’s name became legendary. The London Times published an 

article entitled “Revolution in Science, New Theory of the Universe, Newtonian ideas 

overthrown”. On November 9, 1919, the New York Times published the following article:  

 

“Diversion of light Rays Accepted as Affecting Newton’s Principles11.” 

 

Thus, in 1919 the expedition led by Crommelin and Eddington “confirmed” Einstein’s second 

prediction, that is to say, that the value of the deflection of the light passing near the Sun was 

equal to 1.7 seconds of arc12. Moreover, the question, which was the subject of intense 

controversy, was whether or not Einstein was aware of Soldner’s work when he published his 

article in 1911. 

 

B. Controversy around the curvature of light 

 

In the early Twenties, Einstein and his theory of relativity were subject to many attacks of 

various natures13. The first, the most odious, had an anti-Semitic character. Then, in 1921, 

scientists such as Charles Lane Poor, a professor of astronomy, a specialist in Celestial 

                                                 
11 See Jean-Marc Ginoux, Albert Einstein: a biography through the Time(s), Hermann, Paris, 2016. 
12 Eddington’s results for the solar eclipse observation of the apparent displacement of stars of 1919 have been 
widely disputed by many historians of science. See for example John Earman and Clark Glymour, “Relativity 
and Eclipses: The British Eclipse Expeditions of 1919 and Their Predecessors,” Historical Studies in the 
Physical Sciences, Vol. 11, No. 1 (1980), p. 49-85. 
13 See Milena Wazeck, On Einstein’s opponents: the public controversy about the theory of relativity in the 
1920s, Cambridge; New York: Cambridge University Press, 2014. 

239



 8

Mechanics at Columbia University, tried to prove that Einstein’s theories of relativity were 

false. To this aim he published an article entitled « Is Einstein wrong? – A debate14 ». When 

Einstein was invited to the Collège de France in 1922 by Paul Langevin, his theories were 

challenged by Édouard Guillaume who had worked with him as a patent examiner at the 

Swiss patent office in Bern and had come purposely from Swiss in order to “destroy 

relativity”. Indeed, he had published a few weeks beforehand an article entitled: “Y a-t-il une 

erreur dans le premier mémoire d’Einstein ?” which let no doubt concerning his intentions15.  

Unfortunately, this anti-relativistic attitude was shared by a part of the French scientific 

community and more particularly by many Academicians of Sciences. It has been initially 

convened that Einstein presents his work at the Academy but some of the members of the 

Academy had decided as a protest against his presence to rise and leave the hall as soon as he 

entered, Einstein had to renounce16. In August 1922, Einstein, who had received many death 

threats, decided to leave temporarily Europe. On October 8, 1922, Albert Einstein and his 

second wife Elsa came aboard the S.S. Kitano Maru in Marseille (south France) and reached 

then their final destination at Fukuoka in Japan where Einstein gave a lecture at the Daihaku 

Theater. On November 15, during a stopover in an hotel of Shanghai, Einstein received a 

telegram from Sweden announcing him that he has been awarded the Nobel Prize of Physics 

for “his contribution to theoretical physics and more particularly for his discovery of the law 

of photoelectric effect” and not for his relativity theories.  

This news almost immediately triggered new reactions. Einstein’s most virulent opponent was 

the German physicist Philipp Lenard, Nobel Prize in 1905 (the year of the relativity theory) 

                                                 
14 Charles Lane Poor, “Is Einstein wrong? – A debate” in The Forum, June 1924, p. 705-715. 
15 Édouard Guillaume, “Y a-t-il une erreur dans le premier mémoire d’Einstein ?” Revue Générale des Sciences 
Pures et Appliquées, vol. 33, 15 janvier 1922, p. 5-10.   
16 See Michel Biezunski, Einstein à Paris, Paris, Presses universitaires de Vincennes, Saint Denis, 1991, p. 26. 
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and active proponent of the Nazi ideology. Then, in April 1923 Professors Ernst Gehrcke17 of 

Berlin, P. Lenard of Heidelberg, O. E. Westin 18  of Stockholm charged Einstein with 

downright plagiarism, saying: 

 

“From these facts the conclusion seems inevitable that Einstein cannot be 

regarded as a scientist of real note. He is not an honest investigator.” Thus Westin 

protested to the Directorate of the Nobel Foundation against the reward of 

Einstein19.”  

 

What were “theses facts” invoked by the three professors against Einstein? The New York 

Times of April 13 provides the answer: 

 

“… in 1801 Dr. J. von Soldner, a German physicist of eminence in his day, 

actually derived the formula recently used by Einstein. This was 122 years ago. 

Einstein never once mentions Soldner in his writings. This is bad enough, but the 

worst is yet to come. 

It has been shown by Professor Dr. E. Gehrcke, Director of the Imperial Physical 

and Technical Institute of Berlin, a position first filled by Helmohltz and by 

Professor P. Lenard of Heidelberg, winner of the Nobel Prize in Physics, that 

Soldner omitted a certain factor in his formula of l801, which error Einstein also 

copied when he appropriated the Einstein-Soldner formula in the Einstein paper 

of 1911. In a subsequent paper to the Berlin Academy of Science, 1915, Einstein 

                                                 
17 E. Gehrcke (1878-1960) was a German experimental physicist, Director of the Imperial Institute of Berlin. He 
was a Privatdozent at the Friedrich-Wilhelms-Universität from 1904 to 1921 and an außerordentlicher Professor 
(extraordinarius professor) from 1921 to 1946.  
18 Oscar Edward Westin (1848-1930) was a Swedish engineer, professor of mechanical engineering at the Royal 
Institute of Technology in Stockholm. 
19 See The New York Times, April 13, 1923. This event is also mentioned in Philipp Frank, Einstein: His Life and 
Times, New York, A. A. Knopf, 1947, p. 202 and next.  
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camouflaged this fraud as best he could, yet could not prevent its discovery and 

exposure by Professors Lenard of Heidelberg, Gehrcke of Berlin and Westin or 

Stockholm.” 

 

To these three scientists was added the professor Arvid Reuterdahl, Dean of the Engineering 

Department of the University of St. Thomas, St. Paul, Minnesota. He sent a letter to the Editor 

of The New York Times published on June 3, 1923 and in which he claimed: 

 

“There are two episodes in the Einsteinian development of the bending of light. In 

Einstein’s 1911 paper the value of the deflection is given as 0.83 of a second. 

Soldner’s value was 0.84 of a second. The two formulae are identical except in 

the matter of the convenient substitution by Einstein of different letters than those 

used by Soldner. Compared, letter for letter, the meanings are, however identical20. 

In his 1916 paper Einstein modified his 1911 value to read 1.7 of a second. 

Einstein has never taken the world into his confidence concerning the reason of 

this change. He has never admitted that either one or the other of these values 

must be erroneous21.” 

 

Indeed, in 1916, in his famous article entitled “The Foundations of the General Theory of 

Relativity22”, Einstein realized that his earlier result on the bending of light, he had presented 

in his previous article of 1911, was too small by a factor of 2. This factor will be proved to be 

decisive because it enables to reveal a strict separation between Newtonian and Einsteinian 

theory of gravitation. This was due to the fact that in his 1911 paper Einstein had not taken 

                                                 
20 See § C.3.  
21 We will see in § C.4 that this statement is partially inaccurate. 
22  Albert Einstein, “Die Grundlage der allgemeinen Relativitätstheorie” (“The Foundations of the General 
Theory of Relativity”), Annalen der Physik, 4(49), 769–822, 1916. 
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into account in his computations the curvature of space but, only included the effect of 

Newtonian gravitational interaction on the four-dimensional  space-time that he will express 

later in a Minkowskian metric. According to Abraham Pais : 

 

“Let us briefly recapitulate Einstein's progress in understanding the bending of 

light.  

1907. The clerk at the patent office in Bern discovers the equivalence principle, 

realizes that this principle by itself implies some bending of light, but believes that 

the effect is too small to ever be observed.  

1911. The professor at Prague finds that the effect can be detected for starlight 

grazing the sun during a total eclipse and finds that the amount of bending in that 

case is 0’’87. He does not yet know that space is curved and that, therefore, his 

answer is incorrect. He is still too close to Newton, who believed that space is flat 

and who could have himself computed the 0’’87 (now called the Newton value) 

from his law of gravitation and his corpuscular theory of light.  

1912. The professor at Zurich discovers that space is curved. Several years pass 

before he understands that the curvature of space modifies the bending of light. 

1915. The member of the Prussian Academy discovers that general relativity 

implies a bending of light by the sun equal to 1’’74, the Einstein value, twice the 

Newton value. This factor of 2 sets the stage for a confrontation between Newton 

and Einstein23.” 

 

 

 

                                                 
23 Abraham Pais, op. cit., p. 303. 
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C. Comparison of the work of Einstein and Soldner 

 

Such a comparison has been subject to many studies and several historians of science have 

analyzed both works of Soldner and Einstein from a mathematical point of view during these 

last decades. In 1975, Hans Fuchs published an article entitled “On the history of ideas about 

the effect of gravity on the light24” in which he presented the proofs leading to the value of the 

deflection of light passing near a massive body obtained by Soldner in 1801 and then by 

Einstein in 1911 and finally in 1915. After comparing Einstein’s paper of 1911 with that of 

Soldner of 1801, Fuchs wrote: “Man erhält also trotz Zuhilfenahme des Aquivalenzprinzips 

wieder den alten falschen klassischen Wert! Wie ist das möglich?25”. Then, he explained: 

“Obwohl wir von der Erde aus eine Verlangsamung der Vorgänge feststellen, werden wir 

doch mit gleichen Uhren auf der Sonne wie auf der Erde die gleichen Frequenzen und die 

gleiche Lichtgeschwindigkeit messen, weil die Uhren in gleichem Masse wie die 

Naturvorgänge verlangsamt werden! 

Diese logisch einwandfreie Sicht der Dinge erlangte Einstein erst durch das tiefere 

Verständnis, das durch die allgemeinen Relativitätstheorie gebracht wurde (nach 1915)26.” By 

using the Fields Equations of Gravitation and the Schwarzchild metric (including the so-

called Ricci tensors) Fuchs showed that Einstein was then able to give the “der korrekte 

relativistische Wert” (“the correct relativistic value”). He also compared the relativistic and 

classical calculations and stated that the two results differ by a factor of two. However, his 

proof is different from those presented in this paper. 

                                                 
24 Hans Fuchs, “Zur Geschichte der Ideen über die Wirkung der Schwerkraft auf das Licht,” Orion, Vol. 33 (151), 
(December 1975), p. 183-193. 
25 “Thus, despite the aid of the principle of equivalence, one gets the old false classic value again! How is that 
possible?” 
26 “Although we observe a slowing down of the earth from the earth, we will measure the same frequencies and 
the same speed of light with the same clocks on the sun as on the earth, because the clocks are slowed down to 
the same extent as the natural processes! 
Einstein achieved this logically correct view of things only through the deeper understanding that came with the 
general theory of relativity (after 1915).” 
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In 1978, Stanley Jaki published an article in which he recalled the historical context of the 

bending of light27. Starting from the seminal works of Newton and Laplace, he presented the 

controversy triggered out by Lenard, Gehrcke and Westin (see § B. above). Then, he proposed 

an English translation of Soldner’s article allowing historians of science to study and compare 

his works with those of Einstein28. He gives many details and references concerning Soldner’s 

life but didn’t provide any mathematical analysis of his article.  

In 1980, John Earman and Clark Glymour published a long article in which they compared 

Einstein’s results of 1911 and 1915. As Fuchs29, they recalled: “Einstein had not by 1911 yet 

absorbed the four-dimensional geometrical way of viewing space-time urged by Minkowski. 

In certain respects his thinking about space-time was still classical30.” Then, they explained: 

“Einstein gave two arguments for the deflection of light passing near a massive body such as 

the sun; one argument, given in 1911 before the general theory was in hand, relied on his 

“principle of equivalence,” while the other, given in 1916, used Einstein’s own approximate 

solution to his gravitational field equations together with Huygens’ principle from classical 

optics. The former derivation gave a value for the deflection at the limb of the sun of 0.83" of 

arc, the latter 1.7" of arc.” They concluded that: “By 1916 Einstein had obtained two different 

expressions for the angular deflection of a light ray by a massive gravitational source, both 

giving the angle as a hyperbolic function of distance of closest approach to the massive body. 

The two expressions, one from the principle of equivalence and the other from the general 

theory, differ only by a factor of two.” Nevertheless, they didn’t compare Einstein’s results 

with Soldner’s. 

                                                 
27 See also Jean Eisenstaedt, « De l’influence de la gravitation sur la propagation de la lumière en théorie 
newtonienne. L’archéologie des trous noirs », Archive for History of Exact Sciences, Vol. 42 (4), (September 
1991), p. 315-386. 
28 Stanley L. Jaki, “Johann Georg von Soldner and the gravitational bending of light, with an English translation 
of his essay on it published in 1801,” Foundations of Physics, December 1978, Vol. 8, Issue 11-12, p. 927-950. 
29 Hans Fuchs, “Zur Geschichte der Ideen über die Wirkung der Schwerkraft auf das Licht,” Orion, Vol. 33 (151), 
(December 1975), p. 183-193. 
30 John Earman and Clark Glymour, “Relativity and Eclipses: The British Eclipse Expeditions of 1919 and Their 
Predecessors,” Historical Studies in the Physical Sciences, Vol. 11, No. 1 (1980), p. 49-85. 
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In 1981, Hans-Jürgen Treder and Gerhard Jackisch published an article in which they 

considered that “A factor 2, which had been the occasion for misinterpretation, has to be 

attributed to the terminology used by German physicists and astronomers of that time31.” 

They concluded that: “Soldner did nowhere draw false inferences but fell a victim to the 

printer’s devil, and it is indisputable that Soldner obtained the Newtonian value of the 

deflection of light, which with respect to the constants of his times amounts to 0''84, and not 

to Einstein’s value.” Nevertheless, it is obvious that they compared Soldner’s result with that 

provided by Einstein in 1915 and not with that of 1911. Moreover, their conclusion has been 

challenged by historians of science such as Ledo Stefanini32 who wrote: “Some scholars 

attribute the numerical errors appearing in Soldner’s memoir (correctly pointed out by Lenard 

in 1921 republication) to typographical errors33, but this does not suffice to clear the issue.” 

So, the aim of this work is to mathematically compare the formula obtained by Soldner with 

the one stated by Einstein in his paper of 1911 and to verify if they are identical or not. By 

using a simple first-order series expansion, it will thus be proved (to our knowledge for the 

first time) that both Soldner’s and Einstein’s formula are perfectly identical. Then, a 

mathematical analysis of the second formula concerning the bending of light established by 

Einstein in 1915 will enable to explain the importance of the doubling of this value in the 

framework of Einstein’s theory of gravitation. 

  

 

 

 

 

                                                 
31  Hans-Jürgen Treder and Gerhard Jackisch, “On Soldner’s value of Newtonian deflection of light,” 
Astronomische Nachrichten, Vol. 302 (6), (May 1981), p. 275-277. 
32 Ledo Stefanini, “A misunderstanding in Soldner’s interpretation of the gravitational deflection of light,” 
Lettera Matematica, Vol. 4 (3-4), (March 2017), p. 167-172. 
33 Stefanini quotes Hans-Jürgen Treder and Gerhard Jackisch. 
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1. Value of deflection of light by Soldner in 1801 

 

Johann Georg von Soldner (1776-1833) was a German physicist, mathematician and 

astronomer. He first worked in the Berlin Observatory (Berliner Sternwarte) and later in 1808 

in Munich where he became a member of the Academy of Sciences and the director of the 

observatory in Bogenhausen. In a paper written in March 1801 and published in 1804, he 

calculated the amount of deflection of a light ray by a star based on Newton‘s corpuscular 

theory of light and wrote:  

 

“It is, of course, true that already through observations and otherwise one was 

aware of considerable deviations from an assumed law; such as was the case with 

the aberration of light. There can, however, be deviations which are so small that 

it is difficult to decide whether they are true deviations or errors of observation. 

There can also be deviations which are considerable but, being combined with 

magnitudes one has not yet succeeded in clearly identifying, escape the observer.  

Of the latter kind may be the deviation of a light ray from straight line when it 

passes close by a celestial body and is considerably exposed to its attraction34.” 

 

Soldner then presented the following diagram (see Fig. 1). 

 

                                                 
34 See J. von Soldner, “Ueber die Ablenkung eines Lichtstrals von seiner geradlinigen Bewegung,” (“On The 
Deviation Of A Light Ray From Its Motion Along A Straight Line Through The Attraction Of A Celestial Body 
Which It Passes Close By”), Berliner Astronomisches Jahrbuch, 1804, p. 161-172. See also Stanley L. Jaki, 
“Johann Georg von Soldner and the gravitational bending of light, with an English translation of his essay on it 
published in 1801,” Foundations of Physics, December 1978, Vol. 8, Issue 11-12, p. 927-950. 
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Fig. 1. Soldner’s diagram for deflexion of a light ray. 

 

Then, he indicated that “C (Fig. 1) is the center of the attracting body, A is the location at its 

surface. From A, a light ray goes into the direction AD or in the horizontal direction, by a 

velocity with which it traverses the way v in a second. Yet the light ray, instead of travelling 

at the straight line AD, will forced by the celestial body to describe a curved line AMQ, 

whose nature we will investigate (…) g be the gravitational acceleration at the surface of the 

body. Furthermore CP = x, MP = y and the angle MCP  .” Then, he explained: 

 

“The force with which the light ray at M will be pulled by the body in the 

direction MC, will be 22gr . This force can be decomposed into two others, 

 2

2g
cos

r
  and  2

2g
sin

r
  according to the directions x and y; and therefore one 

obtains the following two equations (s. Traité de mécanique céleste par Laplace, 

Tome I, p. 21) 
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 
2

2 2

2d x g
cos

dt r
   

 

       
2

2 2

2d y g
sin

dt r
  …”  

 

These two equations correspond to the projection along the x and y directions of Newton’s 

second law according to which the product of the mass by the acceleration (left hand side) is 

equal to Newton’s gravitational force (right hand side). 

Soldner’s simplification of the “mass of a ray of light” on either side of this equality is 

consistent with Newton’s theory of light then considered as made up of small discrete 

particles called “corpuscles”. Indeed, it is only in 1803, three years after the writing of 

Soldner’s article, that Thomas Young (1773-1829) performed his famous double-slit 

experiment from which he proposed a wave theory of the light. Thus, starting from the two 

preceding equations and after a demonstration which does not present any great difficulties, 

Soldner draws the following conclusion: 

 

“The light ray, however, comes in the direction DA to the eyes of the observer; 

thus ADB will be the angle of perturbation. If one calls this angle ω then one has, 

since the triangle ABD at A is a right triangle 

 

tan
AB

AD
   

 

If one puts these values for AB and AD in the expression for tan ω, then one has 
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2

2
tan

4

g

v v g
 


 

 

If one substitutes in the formula for tan ω  the acceleration of gravity on the 

surface of the sun, and one takes the radius of that body for unity, then one finds 

ω = 0’’.84. If one could observe the fixed stars very close to the sun, then one 

would have to take this very much into account. But since this is not known to 

happen, the perturbation caused by the sun can also be neglected35.” 

 

At the time, such observations were impossible; Soldner therefore concluded that these effects 

were minute. He ended his article as follows: 

 

“Hopefully, no one would find it objectionable that I treat a light ray as a heavy 

body. That light rays have all the absolute [basic] properties of matter one can see 

from the phenomenon of aberration which is possible only because light rays are 

truly material. And furthermore, one cannot think of a thing which exists and 

works on our senses that would not have the property of matter36.” 

 

Thus, it appears that Soldner based his computations on the Newton’s emission theory, 

according to which light is made up of particles. As far as Einstein is concerned, he made use 

of the Huygens principle, that is to say, the variation of the direction of the wavefront as a 

function of the luminous frequency, as will be seen in the next section. 

 

 

                                                 
35 Ibid. 
36 Ibid. 

250



 19

2. Value of deflection of light by Einstein in 1911 

 

In his 1911 paper, Einstein first established that “the velocity of light in the gravitational field 

is a function of the location37.” Then, by using Huygens’s principle, he stated that “light-rays 

propagated across a gravitational field undergo deflection38.”   

 

 

 

Fig. 2. Einstein’s diagram for deflexion of a light ray. 

 

From this figure (see Fig. 2), Einstein stated that the direction of the wave front changes by an 

amount equal to c n   per unit of distance along the direction of the wave (where c is the 

velocity of light) and the “angle of deflection per unit of path of the light-ray is 
1 c

c n





”. 

Finally, he obtained “for the deflection  , which a light-ray experiences toward the side n  

on any path (s) the expression 

 

2

1
ds

c n
 
 

 ” 

 

                                                 
37 Albert Einstein, “Einfluss der Schwerkraft auf die Ausbreitung des Lichtes” (“On the influence of Gravitation 
on the Propagation of Light”), Annalen der Physik, 4(35), 898–908, 1911. 
38 Ibid.  
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where the integral goes from   to   and kM r   is the gravitation potential. Then, 

Einstein changed variables to polar coordinates as highlighted on the following figure (see Fig. 

3a). In order to simplify the understanding of his approach, let’s pose in what follows: n y  , 

s x  et S R  (see Fig. 3b)39.  

    

    

(a)        (b) 

 

Fig. 3. Deflection of a light ray in polar coordinates. 

 

According to Fig. 3b, we have 2 2r x y  . Thus, the gravitation potential reads: 

  

2 2

kM

x y
 


 

 

It follows that 
32 2

kM kM
y

n y y rx y

        
     

. Einstein then considers that nearly all of 

the deflection occurs within some reasonable proximity of the gravitating body. So, we can 

simply set y = R in the integral which reads: 

 

                                                 
39 See also Kevin Brown, Reflections on Relativity, lulu.com, Mars 2017.  

x 

y

R
  

r 
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2 3 2 3

1 1kM kMR
yds dx

c r c r


 

 

   . 

 

The following variable changes  x R tan  , y R  leads Einstein to: 

 

 
 

  
 

2 22

3 2 3 22 2 2 22 2 2 2 2
2 2

1 2Rd coskMR kMR kM kM
dx cos d

c c c R c Rx y R tan R

 

 

 
  



 

  

   
 

    

 

Then, Einstein ended his 1911 paper by this sentence: 

 

“A light-ray going past the Sun would accordingly undergo deflection by the amount of 4.10−6 

= 0,83  seconds of arc40.” 

 

Let’s notice that although the reasonings and the computations are different, the result of 

Einstein is exactly the same as that of Soldner (as shown in the next section). In other words, 

a light ray passing near the sun will undergo a deflection of nearly 0.83’’. 

 

3. Comparison of Einstein and Soldner formulas 

 

This section aims to prove that both formulas established by Soldner in 1801 and Einstein in 

1911 are identical except in the choice of letters.  

Soldner’s formula of 1801 reads: 
2

2
tan

4

g

v v g
 


 

- g is the gravitational acceleration at the surface of the body 

- v is its velocity.  
                                                 
40 Ibid.  
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In his article, Soldner wrote: 

 

“On the presupposition that light needs 564’’.8 decimal seconds of time to come 

from the sun to the earth, one finds that it traverses in one-tenth of a second 

15.562085 earth radii. Thus v = 15.562085. If one takes among the geographical 

latitudes that whose square of the sine is 1/3 (corresponding to a latitude of 

35°16’), the earth’s radius as 6,369,514 meters, and the acceleration of gravity 

there as 3.66394 meters (see Traité de mécanique céleste by Laplace, Vol. I, p. 

118), then expressed in earth radii g = 0.000000575231.” 

 

We deduce that the dimension of the acceleration of gravity on the surface of the body g is s−2 

and that of the velocity is s−1. Indeed, Soldner made use of a kind of “normalisation” of these 

two physical variables which can be written as 0g g   and v c   where   is the radius 

of the considered body (in this case the Sun). Soldner’s formula can be rewritten as 

 

1

2

2 2 22

2

2 2 1 2 4
tan 1

44 1

g g g g

v v vgv v g
v




       
 

 

But since, according to Soldner g << v, a first-order41 series expansion can be made and reads: 

 

 
1

2
4

2 2 2 2 2

2 4 2 4 2
tan 1 1

g g g g g
O v

v v v v v



               

  

 

                                                 
41 In his 1911 and 1915 articles Einstein also made use of first-order approximations.  
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The angle   is considered as infinitely small, so we deduce that 
2

2g

v
  . 

Then, by posing 0g g   and v c  , we have: 

 

0
2

2g

c
 
  

 

In 1911, Einstein proposed the following formula: 
2

2kM

c
 


 where 

- k  is the constante of gravitation (Cavendish’s constant),  

- M is the mass of the heavenly body, 

-   is the distance of the ray from the center of the body, i.e., its radius. 

In the case of the Sun, we have: 0 2

kM
g 


. So, it gives  

 

0
2 2 2 2

22 2 gkM kM

c c c
        

 

  

Thus, both Soldner and Einstein’s formulas are identical. 

 

0
2

2g

c
  
   
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4. Value of deflection of light by Einstein in 1915 

 

During the autumn 1915, Einstein completed his general theory of relativity. He thus modified 

his gravitation potential   while taking into account as previously the Newton’s gravitational 

interaction (see § C.2) but also the curvature of space near a massive body42. Then, he 

expressed the gravitation potential   as 

 

 
2

3 22 2 2 2

kM mx

x y x y
  

 
 

 

In this case 
 

2 2 2

3 2 52 2 2 2

4kM kMx x y
kMy

n y y rx y x y

         
      

 

The integral reads then 
2 2 2 2

2 5 2 5

1 4 4x y kMR x R
kMyds dx

c r c r


 

 

 
   . By using the same 

variable changes,  x R tan  , y R , Einstein obtained: 

 

 
    

2 22 2 3

52 5 2 2 2
2

4 14 4tankMR x R kMR Rd kM
dx

c r c cos c RR cos





 




 


     

 

                                                 
42 Cf. Kevin Brown, Op. Cit.  
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In his publication of 1916 Einstein43 provided for the deflection of a light ray the value 

2

M
B







 which results of the previous integration. He defined at the page 818 of this same 

article the constant 
2

8 k

c

   (see Eq. (69)). By replacing into the value of B, we have: 

 

2

4
2

kM
B

c R
   

 

Einstein wrote in his conclusion: 

 

“According to this, a ray of light going past the sun undergoes a deflexion of 1.7’’…” 

 

Thus, it appears that Einstein’s computation of the value of deflection of a light ray performed 

in 1915 led him to twice the amount derived in his 1911 paper. 

  

Where does this doubling come from? How did Einstein justify it? 

 

In fact, contrary to what Arvid Reuterdahl (see § B) claimed, Einstein has really “taken the 

world into his confidence concerning the reason of this change”. Indeed, as early as 1915, 

Einstein wrote:  

 

“By use of the Huygens principle, one finds through a simple calculation, that a 

light ray from the Sun at distance   undergoes an angular deflection of 

magnitude 2  , while the earlier calculation had given the value   . A 

                                                 
43  Albert Einstein, “Die Grundlage der allgemeinen Relativitätstheorie” (“The Foundations of the General 
Theory of Relativity” ), Annalen der Physik, 4(49), 769–822, 1916. 
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corresponding light ray from the surface rim of the Sun should give a deviation of 

1.7’’ (instead of 0.85’’) 44.” 

 

In 1920, in the appendix 3 of the third edition of his book written in 1916, he wrote: 

 

“As a result of this theory, we should expect that a ray of light which is passing 

close to a heavenly body would be deviated towards the latter. For a ray of light 

which passes the sun at a distance of   sun-radii from its centre, the angle of 

deflection ( ) should amount to  

 

1.7 seconds of arc 


 

 

It may be added that, according to the theory, half of this deflection is produced 

by the Newtonian field of attraction of the sun, and the other half by the 

geometrical modification (“curvature”) of space caused by the sun45.” 

 

D. Conclusion  

 

The author of one of Einstein’s most famous biographies, Ronald Clark had written that he 

was “the man who had bent the light”. One would be led to believe that the concept of 

“curvature of light” which was conceived by Soldner in the early nineteenth century was 

rediscovered a century later by Einstein. In fact, many authors have shown that this idea was 

                                                 
44 Albert Einstein, “Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie” 
(“Explanation of the Perihelion Motion of Mercury from the General Theory of Relativity”), Preussische 
Akademie der Wissenschaften, Sitzungsberichte, 831–839, 1915. 
45 Albert Einstein, Relativity: The Special and General Theory, London, Methuen & Co Ltd, 1920.  
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already present in the works of Isaac Newton. Indeed, in the first of the famous Queries of his 

work entitled Opticks, Newton wrote in 1704: 

 

« Do not Bodies act upon Light at a distance, and by their action bend its Rays, and is not this 

action (caeteris paribus) strongest at the least distance? »  

 

It thus appears that neither Soldner nor Einstein is the inventor of the concept of “curvature of 

light”. One can then ask whether Einstein had any knowledge of Soldner's work. It is 

naturally very difficult to answer this question. The elements we have today allow us only to 

affirm that the values of the deflection of light rays passing near a massive body obtained by 

Soldner in 1801 and by Einstein in 1911 are perfectly identical, although the computations of 

Soldner were based on Newton’s corpuscular theory, while those of Einstein were based on 

the Huygens’s principle. First, it is important to note that the impossibility of measuring the 

deflection of light during the eclipses of 1912 and 1914 was an extraordinary opportunity for 

Einstein. Indeed, without this providential rain and without the declaration of war the 

observations of the astronomers would have absolutely not confirmed the first value that it 

had provided in 1911 and they would certainly have invalidated his theory. 

Note then that the method of computing the deflection of light that Einstein used in 1915 is 

exactly the same one he used in 1911. The only difference is the expression of gravitation 

potential which took into account the curvature of the space in the vicinity of a massive body. 

Thus, in his article in 1915, Einstein provided a value (1.7’’) which was well contained within 

the range of values observed by the expeditions led by Crommelin and Eddington in 1918 

(0.9’’ to 1.8’’). It is clear from this analysis that the plagiarism accusations against Einstein 

which are part of an anti-relativist and anti-Semitic movement are absolutely baseless. Even if 

it has been established that the values of the deflection of a light ray provided by Soldner in 
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1801 and Einstein in 1911 are identical, they are both wrong because they don’t take into 

account the curvature of space and so, are not consistent with those “obtained” by Crommelin 

and Eddington and confirmed after by more accurate astronomical observations. 
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Abstract. In this paper, we point out an “affinity” between the system of agents
trading in cryptocurrencies and statistical mechanics. In particular, we try to extend
the concept of entropy in the sense of Boltzmann such a definition to a model in
which the particles are replaced by N economic subjects (agents), that are completely
described by their ability to buy and to sell a certain quantity of cryptocurrencies.
In addition, by applying this model to the closing prices of some of this we show that
entropy can be used as an indicator to forecast the price trend of cryptocurrencies.
Keywords: Cryptocurrency, Entropy, Prices Forecast, Boltzmann, Blockchain.

1 Introduction

The concept of entropy was first introduced by Clausius[23], whose definition
was applied to a thermodynamic system that performs a transformation. Since
the mid-19th century, entropy has been a key element linking mechanics to
thermodynamics; however, this entropy suffered from a conceptual problem
which, as demonstrated by Gibbs[28], was revealed in the case of identical gases
(Gibbs Paradox ). He solved this problem by changing the count of states. On
the other hand, Boltzmann[16] presented his statistical interpretation of ther-
modynamic entropy, managing to link the macroscopic properties of a system
with the microscopic ones. Based on Gibbs, in 1949 Shannon[8] developed a
theory capable of evaluating the amount of information that is lost in receiving
a message from a source to a recipient. This form of entropy was generalized
by Rényi[3], Tsallis[7], Adler et al.[15] (in topology), redefined by Pincus[19]
(approximate entropy) and - more recently - by Chen et al.[27] as a time series
regularity measure.
The application of entropy in sectors such as economics or finance is linked to
the work of Brissaud[4] that assimilated entropy to disorder, so as to make this
tool that has always been applied the physics part of the economy. The forms
of entropy most used in this case are Shannon entropy and the generalizations
by Rényi and Tsallis, who contributed to creating a new line of application for
the management of financial portfolios. For example, these new types of en-
tropy has been used by Philippatos and Wilson[6], Usta and Kantar[10], Jana
et al.[22], Gulko[17], and Dionisio et al.[2].
What we want to demonstrate in this paper is that it is possible to assimilate
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a cryptocurrency system to a thermodynamic system. In this way, we are able
to determine entropy in the sense of Boltzmann so that we can make price
predictions related to the possibility that they move in a more or less wide
range; unlike all the recent applications concerning theories based on Shannon
entropy and its derivations. Innovation is linked to the reinterpretation of the
monetary system of cryptocurrencies. In this sense, we can apply physical the-
ories to a social science. Once the system has been described, our goal is to
verify that entropy calculated in the physical sense also occurs in the economic
context to allow us to make assumptions on how the process could move in the
next future. This type of conjecture has been presented by Sergeev[20], Zakiras
et al.[26] and Smith and Foley[9]. In particular McCauley[13], based on this
previous theory, maintains that the illiquidity of the markets does not allow for
the application of the concepts of statistical mechanics.
The paper structure is the following: in Section 2 we analyze cryptocurren-
cies and their key characteristics, focusing on the fact that they have a supply
limit; in Section 3 we describe the evolution of a system of a particle in statis-
tical thermodynamics and how to determine its entropy, subsequently applying
these notions to our monetary system; in Section 4 we define the theoretical
assumptions we can link to the system created previously to study the price
evolution in these currency markets and we analytically describe the calculation
of entropy using real data; finally in section 5 some conclusions are drawn.

2 Cryptocurrency

Cryptocurrencies represent a digital currency system with no guarantee institu-
tion and no transaction control. The main cryptocurrencies, by media coverage
or by the possibility that some financial intermediaries offer to use them as a
payment instrument, are: Bitcoin, Ethereum and Ripple. Unlike traditional
financial assets, their value is not based on tangible assets such as the economy
of a country or a company, but it is based on the security of an algorithm that
tracks transactions. Their definition is controversial since by some entities [11]
they are considered intangible assets (IFRS) while according to the German
financial supervisory authority (BaFin) they are officially financial instruments
[5]. All the cryptocurrencies have been based on the Bitcoin, a currency cre-
ated by Nakamoto[24] who in 2009 released a software capable of implementing
transactions. The currency itself is a unique alphanumeric string that repre-
sents a certain transaction, a transaction which will then be entered in a public
register called blockchain.
The blockchain is the fulcrum of these systems and is essentially a register in
which the data of the owners of the currency are entered, transactions occur
in an encrypted manner. The blockchain is a data structure consisting of a
list of transaction blocks linked together so that each refers to the previous
one in the chain. A block is a data structure that aggregates transactions to
include them in the public register. The block is made of a header, containing
metadata, followed by a long list of transactions. A complete block, with all
transactions, is, thus, 1000 times larger than the block header [1]. The in-
tegrity of the blockchain network is guaranteed through consensus algorithms
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such as Proof-of-Work (PoW) and Proof-of-Stake (PoS), that solve the Byzan-
tine Generals Problem[12] (problem of consent in the presence of errors). A
consensus algorithm is a mechanism used by the network to reach consensus,
i.e. ensuring that the protocol rules are followed and that transactions occur
correctly so that coins can only be spent once.
The cryptocurrency generation process is called mining, which adds money to
the supply. Cryptocurrencies are “minted” during the creation of each block at
a fixed and decreasing rate [1]: each block generated on average every 10 min-
utes contains new currency. For example, if we consider Bitcoin, every 210000
blocks the currency issue rate decreases by 50% (the availability of new coins
grows as a geometric series every 4 years). It is estimated that around the
year 2140, the production of the last block will be reached (6930000) and the
number of coins produced will tend to its upper limit of 21 million (precisely
20999999.97690000), value introduced by Nakamoto himself and contained in
the variable “MAX MONEY” as can be read in the source code present on
GitHub. This value represents a sanity check, especially used to avoid bugs in
which it is possible to generate currency from nothing and therefore moving
towards a situation in which the blockchain diverges into different potential
paths (called fork).

3 Methodology

The main assumption in this paper is that the prices of cryptocurrencies behave
like a thermodynamic system, so it is possible to determine entropy by using
the Boltzmann formula. In order to present the theoretical framework and the
methodology, we need to briefly introduce the main physical results. In Statis-
tical Mechanics a macroscopic system is made up of N molecules (N ∼ 1024

is the Avogadro’s constant) whose mechanics provide the evolution of 6N dy-
namic variables describing completely the microscopic states of this system.
Motion in the phase space can be studied using the 3N position components
and the 3N momenta components, indicated with {qi} and {pi} whose evolu-
tion is driven by Hamilton’s equations. Mechanics, therefore, provides a very
detailed description of the system contrary to thermodynamics which studies
the collective variations; for this reason, the mechanical point of view can be
defined microscopic and the thermodynamic one macroscopic. The study of the
system from a microscopic point of view concerns experimental observation on
one or a few molecules.
Everything that happens from the microscopic side can be expressed in macro-
scopic terms through thermodynamics, defined in this case as a large amount of
microscopic variables. We consider an isolated system of N particles described
by the 3N coordinates and the 3N momenta in a 6N -dimensional space at
a certain time t. Particles are subject to the laws of classical mechanics and
therefore X(t) evolves according to Hamilton’s equations. Since the Hamilto-
nian H(p, q) does not depend on time, the energy E is a conserved quantity
during motion and develops on a fixed hypersurface. We want, for example,

Source: https://github.com/bitcoin/bitcoin/blob/master/src/amount.h
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to measure an observable A(X) (a function defined in the phase space) of the
system in thermodynamic equilibrium, but since the scale of macroscopic times
is much larger than the microscopic one, we can consider a datum as the result
of a system that has gone through a large series of microscopic states; this im-
plies that the observable must be compared with an average performed along
with the evolution of the system calculated over very long times Ā. The calcu-
lation of Ā would require knowledge of both the microscopic state at a certain
moment and the determination of the corresponding trajectory in the phase
space, which corresponds to a practically inexhaustible request. To determine
the observable, the ergodic theory intervenes, according to which each energy
surface is completely accessible to any motion with the given energy and the
average residence time in a certain region is proportional to its volume. If
these conditions are satisfied, the average Ā can be calculated as the average of
A(X) in which the states with the fixed energy contribute with equal weight.
In applications it is convenient to consider on average all states with energy
within a fixed range [E,E +∆E]; furthermore, we are only interested in some
macroscopic properties such as particle number N and the volume V . There
is an infinite number of systems that satisfy these conditions: these form the
Gibb’s ensemble which is represented by a set of points in the phase space
characterized by a density function ρ(p, q, t) defined so that ρ(p, q, t) d3Np d3Nq
corresponds to the number of representative points of the system during the
instant t contained in the infinitesimal volume of the phase space d3Np d3Nq.
Furthermore, since energy, volume and number of particles are constants of
motion, the total number of systems in an ensemble is conservative.
We can thus introduce the postulate of equal a priori probability who claims
that when a macroscopic system is in thermodynamic equilibrium its state can
be with equal probability each of those which satisfies the macroscopic condi-
tions of the system. This postulate implies that the system under consideration
belongs to an ensemble called microcanonic with density function

ρ(p, q) =

{
ρ∗ if E < H(p, q) < E +∆

0 otherwise
(1)

where ρ∗ is constant and all members of the ensemble have the same number
of particles and equal volume.
We can define Γ (E) the volume occupied by the microcanonical ensemble in
the phase space as:

Γ (E) ≡
∫
E<H(p,q)<E+∆E

d3Np d3Nq (2)

and Σ(E) the volume bounded by the energy surface E:

Σ(E) ≡
∫
H(p,q)<E

d3Np d3Nq (3)

so that
Γ (E) = Σ(E +∆E)−Σ(E). (4)
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Entropy, then, can be defined as:

SΓ =

∫
E≤H≤E+∆E

d3Np d3Nq ρ(−κB ln ρ)

=

∫
E≤H≤E+∆E

d3Np d3Nq
1

Γ

(
−κB ln

1

Γ

)
=

1

Γ
κB ln Γ

∫
E≤H≤E+∆E

d3Np d3Nq

=
1

Γ
κB ln Γ · Γ = κB ln Γ (E)

(5)

where κB ∼ 1.3806 ∗ 10−23 is the Boltzmann constant. To analytically cal-
culate Γ (E), which represents the number of states accessible to the system
at temperature T , we must consider that a microcanonical ensemble is made
up of J identical copies of the closed system, each of which is located in a
microstate (pi,qi) of the phase space. Being all on the same hypersurface E,
we can divide it into cells of equal size, where in each there are ji systems such
that J =

∑
i ji. To define the system it is necessary to find the most probable

distribution of the ji microstates, that is, to count the total number of ways in
which we can obtain a certain macrostate. In the Boltzmann paradigm with
an ideal gas consisting of identical particles under the same conditions, we can
say that

Γ (E) =
J !∏
i ji!

(6)

The idea that entropy is connected to volumes in the phase space finds its ori-
gin in the Helmholtz Theorem, whose goal is to exactly bring thermodynamics
down from mechanics.
Let us now try to translate this physical theory into a financial dress. Viaggiu et
al.[25] have developed a representation of an economic model relating to money
from a thermodynamic point of view. In their description the ensemble is made
up of the N interacting economic subjects, entirely described by two variables
{xi, yi} which represent money and credit/debt capacity and which are not
conjugated in the sense of mechanics Hamiltonian. The key characteristic is to
consider a representative function of the total currency as a conservative law,
to be able to exploit the ergodic hypothesis.
Our idea is to go back to their hypothesis by applying it to the case of cryp-
tocurrencies. We consider a model in which the particles are replaced by N
economic subjects (agents) who intend to trade in cryptocurrencies (compared
only to a reference currency, such as the USD). These agents are completely
described by 2 variables, which we can, however, identify as {xi, yi}, where xi
and yi indicate, respectively, the ability to buy and to sell a certain quantity of
cryptocurrencies (both expressed in monetary terms). The latter hypothesis is
possible according to the fact that the market to which we refer is influenced
only by the supply and demand leverage. As for [25], even if the complete
Hamiltonian formalism is not respected, we can consider as a conserved quan-
tity the total number of cryptocurrencies in circulation which by their definition
is constant over a suitable time interval through the function M(xi, yi) (as in
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the particular case of Bitcoins for which the supply limit is fixed at 21 million).
However, since the supply limit has not yet been reached by any cryptocur-
rency we consider this quantity constant concerning the currency in circulation
in a precise time t, therefore:

M =

N∑
i=1

xi + yi. (7)

In this sense, the sum of the ability to sell and buy of the N agents fully
describes the cryptocurrencies in circulation. The ergodic hypothesis allows
us, given a certain function f(xi, yi), to express its average with respect to the
time in terms of an average over the ensemble at fixed M :

f̄ =

∫
M=const

f(x, y)ρ(x, y) dx dy (8)

where ρ(x, y) denotes the probability distribution of the ensemble. Through
these assumptions we can verify the economic transformations through ther-
modynamics; in particular, as in statistical mechanics, we can calculate the
volume in the phase space [25] . If we integrate over all the available volume
of the configuration space spanned by {x, y} with M̄ = m (where M̄ denotes
the average over the whole configuration space) we have

∫
M̄=m

dNx dNy = 0.
So introducing a thick shell ∆ where ∆� m we can define:

Γ (m) =

∫
m<M<m+∆M

dNx dNy

k2N
(9)

where dNx dNy is understood as the phase space and k is a normalization
factor such that Γ is dimensionless. This functional represents the number
of microscopic realizations of the system under examination and allows us to
calculate the entropy S as described in the equation (5).

4 The model

In this section, however, we try to define, through a new type of approach, how
it is possible to calculate entropy considering essentially the prices obtainable
from the currency markets (FOREX).
First, we know that cryptocurrencies are used by an approximate number of
economic entities equal to 44 million (based on the number of blockchain port-
folios[21]) for which N � 1. We also know that every subject in our system
is fully described by its ability to buy and sell ({xi, yi}). Let us consider that
these two variables are summarized in the last prices of the cryptocurrency on
the currency markets, a type of price used to keep track of changes in the value
of an asset throughout a session. In this sense, the latest prices allow us to
understand whether, compared to the previous session, the ability to buy or
sell prevailed. We can summarize this price capability in the sentence “prices
describe the strength with which agents position themselves in the phase space”.
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The key point is that we can use the function M (described above) because in
a certain time t the quantity of cryptocurrencies is constant and quantifiable,
in this way we can go back to the previous economic model and determine Γ
as described in the equation (9). Analytically, we do not consider the number
of economic subjects present in the market but indirectly deduce their “po-
sition” in the phase space from the difference between the closing prices. In
particular, first we cluster the closing price series based on a certain reference
interval (5 days); as for each cluster there is a maximum and a minimum price,
we calculate the difference in terms of necessary steps to pass from one to the
other obtaining a certain value of gap G (this assumption is based on the
idea that the distance between maximum and minimum is a measure of the
dispersion of agents in our phase space); to calculate the “volume” occupied
by the disposition of the agents we use combinatorial analysis, therefore:

Γ = G5 (10)

Once the value of Γ is determined, entropy can be calculated by using the
Boltzmann formula:

S = κB ln Γ. (11)

Finally, precisely because Boltzmann’s constant is of the order of Avogadro’s
number, we can “rationalize” this entropy value obtained by multiplying it by
1023. Our data analysis shows that in situations where entropy is drastically
reduced, in the following phase it must grow in an “almost obligatory” way; this
in terms of cryptocurrency prices indicates that in situations in which the gap
between the maximum and the minimum is drastically reduced in the transition
from one cluster to another “almost compulsorily” follows a situation in which
it is certainly wider than the previous one. This type of price-based entropy
defines how agents move in the phase space, so it allows us to understand if
there is more movement towards one area rather than another.

4.1 Dataset

The empirical analysis has been applied to the closing prices of three cryp-
tocurrencies, all related to the US dollar (USD), that are:

• Tether, whose price with 4 decimal places requires a step equal to 0.0001;
• Bitcoin Cash, whose price with 2 decimal places requires a step equal to

0.01;
• Litecoin, whose price with 3 decimal places requires a step equal to 0.001.

Prices are considered with a daily time frame over 1 year, from 1/1/2019 to
31/12/2019 and they are clustered in 5 days. To make the figures more clear,
the 1-year interval has been divided into 4 trimesters. Furthermore, to better
test the idea, the same test was carried out also on daily prices at 1 minute of
1/4/2020 recorded from 10:56 to 11:52, instead of clustered in 5 minutes. The
difference from the daily case is that these prices were collected, always from
the same source, but observed on different currency markets.

Source: Investing.com
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4.2 Numerical examples

We can start the analysis from the annual case. The first cryptocurrency
analyzed is Tether (USDT/USD), whose price moves in a neightborhood of 1
and consists of 4 decimal places; distinguish the trend of entropy compared to
prices in the 4 ranges previously defined.

(a) Closing prices and en-
tropy 1/1 - 31/3

(b) Closing prices and en-
tropy 1/4 - 29/6

(c) Closing prices and en-
tropy 30/6 - 27/9

(d) Closing prices and en-
tropy 28/9 - 31/12

Fig. 1: Prices (blue) and entropy (orange) Tether in the period 1/1 - 31/12

As can be seen graphically, when entropy reaches a point of relative mini-
mum falling below a certain threshold (it therefore undergoes a sharp reduction)
it is forced in the next cluster to grow, almost as if to rebalance itself. In terms
of prices, this implies that in the cluster in which the entropy descent occurred
there was a very small gap and, in the subsequent cluster, since entropy in-
creases the gap also increases. In this case, the range of variation of prices is
very “narrow” and every movement is important. It is possible, however, to no-
tice for example looking at the figure 1 (d) what is the gap value and therefore
the entropy threshold that, if “under”-passed, will cause an immediate growth
in the next future.
The next cryptocurrency analyzed is Bitcoin Cash (BCH/USD):
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(a) Closing prices and en-
tropy 1/1 - 31/3

(b) Closing prices and en-
tropy 1/4 - 29/6

(c) Closing prices and en-
tropy 30/6 - 27/9

(d) Closing prices and en-
tropy 28/9 - 31/12

Fig. 2: Prices (blue) and entropy (orange) Bitcoin Cash in the period 1/1 -
31/12

In this case the figure 2 (d) shows how the gap threshold below which a sharp
drop in entropy occurs can also be quite high (especially in currencies where
high volatility allows it to to move many points from one price to another).
The last cryptocurrency we have considered is Litecoin (LTC/USD):
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(a) Closing prices and en-
tropy 1/1 - 31/3

(b) Closing prices and en-
tropy 1/4 - 29/6

(c) Closing prices and en-
tropy 30/6 - 27/9

(d) Closing prices and en-
tropy 28/9 - 31/12

Fig. 3: Prices (blue) and entropy (orange) Litecoin in the period 1/1 - 31/12

Also in this cryptocurrency all the situations defined above occur, in par-
ticular from the figure 3(d) it can be seen how, following the fact that the first
4 clusters are growing despite the gap value being quite low, the gap threshold
to define the drastic descent of entropy is quite low. As for the case of 1-minute
prices, we can summarize the trend of the different cryptocurrencies together
as shown in figure 4 which shows how all the assumptions made in the previous
case are also respected for prices of this type
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(a) Tether (b) Bitcoin Cash

(c) Litecoin

Fig. 4: Prices (blue) and entropy (orange) of cryptocurrencies based on 1 minute

In particular, the hypotheses made previously are very evident in the case
of the Tether (figure 4 (a)).

4.3 Possible effects on prediction

Thanks to previous results we can use entropy as an indicator to make pre-
dictions on the price trend of cryptocurrencies in the currency markets. For
example, we can suppose that we are in a certain cluster X where entropy has
declined sharply. As previously defined, we expect entropy to grow in the next
cluster and this leads to an increase in the price gap. The hypothesis we can
make is that the value of the gap in the cluster X+1 is at least one unit higher
than the value in the cluster X: we can use this information to understand
what the future price range will be. In this case, knowing the value of the
gap in the cluster X, we can create a bifurcation that represents the possible
evolution of the price in the event of a bullish or bearish trend. Assuming,
moreover, that the first cryptocurrency price close enough to the last price of
the previous cluster what we can expect is such a situation: if the second clos-
ing price of the cluster X + 1 is higher than the previous price in the same
cluster and assuming an upward trend we can assume that the series of prices
continues in an area that we have defined as Gap−; while if the second closing
price of the cluster X + 1 is lower than the previous price in the same cluster
and assuming a bearish trend we can assume that the price series continues in
an area that we have defined as Gap+. Such information can be fundamental
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for example for an investor who intends to choose the ideal moment to enter
(or exit) the market or balance any price limits.

5 Conclusions

In this paper, we have defined a similarity between a thermodynamic system
and a currency system. Thanks to this assumption, we have shown how it’s
possible to apply Boltzmann’s entropy to cryptocurrencies. This system is
characterized by the presence of N subjects interested in buying (or selling) this
type of currency. Assuming that the quantity of money at a certain moment t
is fixed and determinable, it is possible to hypothesize that the position of each
economic entity is summarized by the last price of the cryptocurrency itself in
the currency markets, as an indicator characterized by the ability to buy and
sell. With this hypothesis, it was possible to determine the entropy using the
Boltzmann formula, dividing the time interval into clusters and calculating the
gap between the different prices. This analysis has shown that when entropy
falls sharply then it must necessarily grow shortly; which in terms of price
corresponds to a situation in which the gap between maximum and minimum
is wider than the previous one.
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