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Abstract. A quantity formally similar to averaged angular momentum is com-
puted for many chaotic scalar time series with additional Gaussian noise. Consid-
ered time series are constructed using iterative maps, three-dimensional ODEs and
computer generated noise. Using proposed method we can distinguish chaos with
noise from pure noise, if level of noise in time series is low enough. Some types of
chaos can be detected in short time series with very high level of noise. Application
of the method on real time series is demonstrated.
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1 Introduction

Identifying chaos in time series is a very difficult task arising in physics,
fluid mechanics, astronomy, geophysics, meteorology, ecology, life sciences
and finance. One can try to solve this task using time delay embedding [1,2]
and correlation dimension algorithm [3] or estimating entropies [4] and Lya-
punov exponents [5,6]. There are methods for analysis of irregular time series
(chaotic and stochastic) based on short-term predictability (chaotic systems
follow definite rules), detection of nonlinearity, reversibility, surrogate data
and transportation distance function [7]. It is important for understanding,
modeling and forecasting of complex processes [8].

We compute here a quantity looks like the averaged component of the angular
momentum of a particle. The aim is to develop a new approach in the anal-
ysis of irregular time series in other to have the value of this quantity as an
additional indicator of chaos, in a specific time series, beside other indicators
obtained by different methods. Our mechanical view on time series is similar
to Tuncay’s mechanics of stock exchange, where he introduces potential and
kinetic energies for prices [9].

2 Angular Momentum

For a time series a;; (1 < j < N + 3), we compute

@

T =
J
amaz
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where
Qmaz = maz{|a;|;j =1,2,...,N + 3} (2)

Then we take
=3, 1<j<N (3)

(it is not so important if time delay is 1, 2 or 3) and compute components of
velocity in discrete time

Ugj = L5 = Tj-1, Uyj =Y —Yj-1, 2<J<N (4)
We can now find out values of z component of the angular momentum
sz = TjVy; — YjUzy, 2 S j S N (5)

For a particle of unit mass with coordinates x; and y;, the quantity

1 N
J:

would be the angular momentum averaged in discrete time. We will see that
the level of noise in a time series significantly influences the value of L.

3 Time Series Constructed Using Feigenbaum Map
and Lorenz Equations

We compute here

Q5 = (1 - b)«fj + bgmaa:Gj (7>
where
fj =1- qg]?—l (8)
(Feigenbaum map) and
Emaz = maz{|&l;j =1,2,..., N + 3} 9)

G is computer generated Gaussian noise where distribution mean is zero and
scale parameter is one. The level of noise is denoted by b. For low enough
b, we can distinguish chaotic time series with noise from clean noise if the
averaged angular momentum (L) is computed (figures 1 and 2).

We also use the relations (7) and (9) after replacement

& — £G1) (10)
where £(jh) satisfies equations (Lorenz)
s _ M e e B 8
Eow-¢, T=re-n-g, T=@m-s¢

Again we can distinguish chaotic time series with noise from clean noise, for
low enough noise level (figure 3).
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Fig. 1. Averaged angular momentum (L) of a very short time series (N = 300)
constructed using Feigenbaum map (8) with ¢ = 1.94 and &, = 0.6. For low enough
noise level b, L(b) is different from L(1) (corresponding to clean Gaussian noise).
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b

Fig. 2. L of time series with N = 597 constructed using Feigenbaum map (8) with
q =1.67 and & = 0.4.
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Fig. 3. Averaged angular momentum of time series with N = 475 constructed using
Lorenz equations (11) with » = 30 and £(0) = 7(0) = ¢((0) = 1. Here h = 0.1.
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4 LM Diagrams

Besides the averaged angular momentum L, the spread of angular momentum
M =max{L,;;j =2,3,...,N} —min{L,;;j =2,3,...,N} (12)

will be of crucial importance in our approach.
Here we consider time series (7) with (10) using three-dimensional ODEs like
(11). We take

N =3000, 0.01<h<0.1, -1<£(0),n(0),¢(0)<1 (13)
Values of h,£(0),n(0),¢(0), restricted in this manner, we choose randomly.

We have computed L and M for 2800 different chaotic time series with
additional Gaussian noise (red circles in figures 4,5,6,7). There are included:

e 200 different time series (o; = (1 —0)&(jh) + b&maxG;) constructed using
Lorenz equations (11) with » = 28 and different values of b, h, £(0), n(0)
and ¢(0) randomly chosen in given intervals

e 200 different time series constructed using Rossler equations

de¢ d¢

dn
— = -1 - — =¢(4+01p, — =01+ -1
It n—=q m £+ 0.1n, It 0 ¢(§ —10)

e 200 different time series constructed using Ueda equations

s dn_ s ~ ¢
3= g = 8 ~hkn+ Bsing, 1

at
with £ = 0.06 and B = 8.1
e 200 different time series constructed using Rikitake equations
dg g

_ dn _ _ a
o= HEE G = pn (¢ — a)§, pri

with p =1 and a =4
e 200 different time series constructed using modified Lorenz equations [10]

E e D o e d 8
o =0 =), =@ —dp) -6 =8 -3¢
where p = 6.4

e 200 different time series constructed using modified Lorenz equations with
another value of p corresponding to chaos
e ctc.

We also have computed L and M for 3600 different stochastic time series
(blue circles in figures 4,5,6,7) with N = 3000. There are included:
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e 200 different time series with float random numbers between 6.9 and 25.3

e 200 different time series with rational random numbers between —15/2
and 15/2

e 200 different time series with integer random numbers between —61 and
—4

e 200 different time series with random numbers between other certain
boundaries

e random series with Gaussian distribution (b =1)

e ctc.

0 o1 008 006 004 002 0 0.02

Fig. 4. Averaged angular momentum (L) and spread of the angular momentum
(M) for chaotoc time series (red circles) and stochastic time series (blue circles).
Here we take b = 0 (there is not noise in chaotic time series) and N = 3000.

0 o1 o8 loos o4 w0z 0 0.02

Fig.5. L and M for chaotic time series with noise (red circles) and stochastic time
series (blue circles). Here 0 < b < 0.05 (the level of noise is randomly chosen) and
N = 3000.

Fig. 6. Averaged angular momentum and spread of the angular momentum for
chaotic time series with noise (red circles) and stochastic time series (blue circles).
Here we take 0 < b < 0.15 and N = 3000. Broadening of red area, compared with
the previous figure, is a consequence of the increasing of maximal b.
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0 o1 o0

Fig.7. L and M for chaotic time series with noise (red circles) and stochastic time
series (blue circles). Here 0 < b < 0.3 and N = 3000. If the point (L, M), for a real
time series, is in the overlapping area of red and blue circles, we can not distinguish
chaos from noise.

5 Real Time Series

If o, (1 < n < N+3) is vertical acceleration (nm/s?) of the Kobe earthquake
in nth second [11], recorded at Tasmania University on 16 January 1995, we
find L = —0.01 and M = 0.5. Here N = 3045. The point (—0.01,0.5) is in red
area of figure 5 so we conclude that we have an indication of chaos. We find,
using angular momentum method, that considered real time series is chaotic
one with the noise level b < 0.05. This is in agreement with two results pub-
lished before. First, de Sousa Vieira found out that chaos is present in the
symmetric two-block Burridge-Knopoff model for earthquakes [12]. Second,
according to Iliopoulos et al. [13], the Hellenic lithospheric system appears
to be in a state of early turbulence with a low dimensional universal attractor.

Considering monthly temperatures in England [11] for the yers 1723-1970
(N = 2973), we get L = —0.06 and M = 0.7. One can see the point
(—0.06,0.7) in red area of figure 5. Again we have chaos with noise of level
b < 0.05. It is interesting that Berndtsson et al. [14] analyzed monthly tem-
perature time series observed in Lund (1753-1990) and concluded that there
are indications of a low dimensional chaotic component.

For daily brightness of a variable star on successive midnights [11] (N =
597) it is found L = —0.02. If we use figure 2, we can conclude that there
is a very large amount of noise in this time series. This is in agreement
with the results found by Kiss et al. Power spectra of red supergiant stars
show a single mode resolved into multiple peaks under a Lorenzian envelope,
interpreted as evidence for stochastic oscillations caused by convection and
pulsations. A strong 1/f noise component in the power spectra is also found
[15].

Considering monthly prices of gold in US Dollars from January of 1971
to October of 2010 [16] (N = 475), we find out L = —0.00013. For prices in
Yens we get L = —0.00074. We conclude that these time series are stochastic
both (figure 3). It is often in econometrics that time series are assumed to
be stochastic [17].
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6 Conclusion

The proposed angular momentum method can give us an indication of low-
dimensional chaos in a noisy time series. It is possible sometimes distinguish
chaos from noise in a very short time series. We have analyzed some real time
series using the angular momentum method and our results are in agreement
with the published results obtained by some other methods. We are restricted
here on certain types of chaos and noise so there are time series we can not
analyze using the method. The upgrade of LM diagrams is possible and the
method can be more efficient, but never absolutely efficient.
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Abstract. Aim. This work aims to find evidence of deterministic dynamics in Fi-
nancial Markets combining the advanced spectral method of the Singular-Spectrum
Analysis (SSA) with the classical tools provided by the chaos theory. We focus
on return and realized volatility series of several stock indexes (i.e., FTSE ITALIA
MIB STORICO, DAX 30, CAC 40, FTSE ALL SHARE, S&P500, NASDAQ 100, NIKKEI ALL
STOCKS and EURO STOXX).

Methods. Initially, a Monte Carlo SSA (MC-SSA) tests significance against a
red-noise null-hypothesis (AR(1), first-order autoregressive process) is performed.
Specifically, the error bars computed for each empirical orthogonal function rep-
resent 95% of the range of variance found in the state-space direction defined by
that empirical orthogonal function in an ensemble of 1000 red-noise realizations.
Thus, the bars represent the interval between the 0.5% and 99.5% percentiles, and
eigenvalues that lie outside this range are significantly different (at the 5% level)
from those generated by the red-noise process against which they are tested. Then,
the eigenvalues lie outside this interval are used to reconstruct the time series of
the stock indexes. Finally, we apply the chaotic analysis on the reconstructed time
series.

Results. Despite the extremely complex morphologies observed in the vast ma-
jority of the Financial Markets time series, here we show that the fundamental
dynamic appears to be governed by a well-defined fractal attractor. A universal
strange attractor —underlying the nontrivial financial time structures— suggests that
the mechanism of production of such phenomena is governed by some inherent de-
terministic processes with a few degrees of freedom. In conclusion, we discuss the
stock indexes of FTSE ITALIA MIB STORICO and the NIKKEI ALL STOCKS in which
the Monte Carlo SSA test does not distinguish the signals from a relatively signifi-
cant red-noise.

Keywords: Financial Time Series, Chaos, Singular Spectrum Analysis.

1 Introduction and Purpose

Chaos theory has been applied to many different fields, from predicting
weather patterns to the stock market. However, the stochastic random noise
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present in several physical processes affect the possibility of using this anal-
ysis and, more generally, to treat the system with a relative low number of
dimensions [1]. In this paper, we treat the financial time series as natural dy-
namic process with the purpose of extracting the deterministic signal from a
pure noisy. The de-noise time series is then analyzed with the classical tools
provided by the chaos theory. The experiment is performed by using sev-
eral stock indexes. Excepted in the cases of the FTSE ITALIA MIB STORICO
and the NIKKEI ALL STOCKS indexes, all time series analyzed here show an
universal strange attractor with a correlation dimension, Dy < 2. This fact
point out that the mechanism of production of such phenomena is governed
by some inherent deterministic processes with a few degrees of freedom mak-
ing the financial signal more tractable from a mathematical point of view.
Furthermore, the evidence of small positive maximum Lyapunov exponents
found here, 0.01< Apqe < 0.003, provide an useful constraint on making
prediction. Lyapunov exponents, in fact, are inversely proportional to the
predictability horizon.

In this work, we only present the detailed analysis of the EURD STOXX. The
complete Singular Spectrum Analysis, as well as, the chaotic investigation of
the entire sample will be publish by Romano et al. (in preparation).

2 Data

We focus our analysis on return and realized volatility series of several stock
indexes, FTSE ITALIA MIB STORICO,DAX 30, CAC 40, FTSE ALL SHARE, EURO
STOXX NASDAQ 100, S&P500, and NIKKEI ALL STOCKS. The analyzed fre-
quency is daily for a period ranging from 01/01/1990 to 31/03/2010. All
time series are temporally coincident with the exception of the Japanese index
ranging from 01/01/1991 to 31/03/2010. Before addressing the statistical
chaotic analysis, we test the non-linearity of time series under consideration
using the BDS test. The null hypothesis Hy: the time series are independent
and identically distributed, is rejected for all stock indexes analyzed here.

3 Method

In this work we combining the advanced spectral method of the Singular-
Spectrum Analysis (SSA) with the classical tools provided by the chaos the-
ory. Our analysis is briefly summarized in what follows.

(TI) Initially, a Monte Carlo SSA (MC-SSA) tests significance against a
AR(1) null-hypothesis Hy is performed. Specifically, the error bars computed
for each empirical orthogonal function represent 95% of the range of variance
found in the state-space direction defined by that empirical orthogonal func-
tion in an ensemble of 1000 red-noise realizations. Thus, the bars represent
the interval between the 0.5% and 99.5% percentiles, and eigenvalues that
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lie outside this range are significantly different (at the 5% level) from those
generated by the red-noise process against which they are tested.

(IT) By using these de-noise eigenvalues we reconstruct the time series of
the stock indexes.

(III) Finally, on the reconstructed time series we apply the classical
chaotic analysis: attractor reconstruction, correlation dimension, Dy and
maximum Lyapunov exponent A;,qz-

3.1 Singular Spectrum Analysis

Singular Spectrum Analysis (SSA) is a recent and alternative time series
method [2].

Based on principal component analysis, the SSA method generates a set of
eigenvalues and eigenvectors from a symmetric covariance matrix obtained by
setting a specified window length M. The window length M should be chosen
to be longer than number of data points. In general, the window length be
less than about N/5 where N is the number of points in the time series.
The choice of window length sets the dimension of the lag autocorrelation
matrix to be constructed and diagonalized by SSA, and thus determines the
computational burden of the application. Larger values of M correspond to
higher spectral resolution, although there is no direct equivalence between
them. Robustness of results to M is an important test of their validity. We
test different settings of the window length (3 < N < 10) without observing
significant changes in our analysis.

The eigenvalues quantify the variance associated with each eigenvector or
empirical orthogonal function (EOF). Projection of the data onto a set of
EOFs allows its reconstruction for selected components, such as those above
the noise floor accounting for most of the significant signal.

The application of SSA in combination with this red-noise test is known
as Monte Carlo SSA [3]. The SSA-MTM TOOLKIT freeware software! was
used for the analysis [4].

3.2 Monte Carlo SSA

The Monte Carlo SSA test (MC-SSA) was used to distinguish deterministic
signals from red noise. Red-noise, is known to be significant relevant in
several natural system. It is dominated by cycles of low frequency (long
period) in its power spectrum and exhibits significant autocorrelations that
decay over time. For red-noise, we specifically consider here a first-order
autoregressive process, AR(1), given by z;=¢x;_1+e; with 0<¢<1 and ¢
independent identically distributed normal errors.

A total of 1000 randomizations were used for the computation of MC-
SSA. MC-SSA estimates the parameters of the AR(1) model from the time
series itself by using a maximum-likelihood criterion [5].

! http://www.atmos.ucla.edu/tcd/ssa/
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SSA

Data Vector -EURO_STOXX, M=528; Eigenspectrum Shape Test

Index

Fig. 1. Eigen-spectrum Shape Test of EURO STOXX index. The eigenvalues are
ranked by order of importance according to the variance. The bars specify the
95% confidence intervals generated with Monte Carlo simulations of red-noise.

4 Results

Fig. 1 shows the eigenvalues decomposition (eigen-spectrum) obtained by
MC-SSA for the EURO STOXX index. The eigenvalues are ranked by order of
importance according to the variance. Specifically, the error bars computed
for each empirical orthogonal function represent 95% of the range of vari-
ance found in the state-space direction defined by that empirical orthogonal
function in an ensemble of 1000 red-noise realizations. The 95% confidence
intervals are defined by the values expected for a red noise process with sim-
ilar decorrelation time 7=-1/log(r), where r is the lag-one autocorrelation
value (see §3). Thus, the bars represent the interval between the 0.5% and
99.5% percentiles, and eigenvalues lying outside this range are significantly
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Number of days from 01/01/1990 to 31/03/2010

Fig. 2. EURO STOXX index: in red we show the the noise sub-components as reported
in the the eigen-spectrum shape (MC-SSA); in blue the deterministic part of the
signal is reconstructed.

different (at the 5% level) from those generated by the red-noise process
against which they are tested. The first two eigenvalues are dominant and
lie outside this interval and their variances are significantly different from
the noise-variance. These eigenvalues are used to reconstruct the de-noise
time series plotted in blue color inside the original signal (see Fig. 2) The
strange attractors of the EUROD STOXX index is plotted in Fig. 3. In partic-
ular, the Fig. 4 shows the Strange Attractor of the EURO STOXX index from
01/01/1995 to 01/01/2005 in which we perform the research for the max-
imum Lyapunov exponent. The values of the correlation dimension and the
maximun Lyapunov Exponent are Dy = 1.87 and A4, = 0.006, respectively
(see Figs. 5-6). Excepted in the cases of the FTSE ITALIA MIB STORICO and
the NIKKEI ALL STOCKS indexes, all stock indexes reported in §2 show an
universal strange attractor with a correlation dimension, Dy < 2 and 0.01 <
Amaz < 0.003 (Romano et al. in preparation).

5 Conclusion

The advanced spectral method of the Singular-Spectrum Analysis (SSA) with
the classical tools provided in the chaos theory prove largely successful to de-
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Fig. 3. Strange Attractor of the EUR0 STOXX index after removing the noise sub-
components from the eigen-spectrum shape. See text for more details.

scribe and classify the financial time series. Despite the extremely complex
morphologies observed in the vast majority of the Financial Markets time
series, here we show that the fundamental dynamic appears to be governed
by a well-defined fractal attractor. A universal strange attractor underly-
ing the nontrivial financial time structures suggests that the mechanism of
production of such phenomena is governed by some inherent deterministic
processes with a few degrees of freedom.

Clearly our analysis shows two types of markets (i) the financial sig-
nal is separable from a stochastic noise (DAX 30, CAC 40, FTSE ALL SHARE,
S&P500, NASDAQ 100, and EURO STOXX) (ii) the dynamic process of the
time series is completely affected by random phenomena (FTSE ITALIA MIB
STORICO and NIKKEI ALL STOCKS). This in principle gives us the opportunity
to make more accurate econometric analysis because a priori we know the
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Fig.4. Strange Attractor of the EURO STOXX index from 01/01/1995 to
01/01/2005. In this time period we perform the research for the maximum Lya-
punov exponent.

ly

Time

Fig. 5. Maximum Lyapunov exponent of EUR0 STOXX index, Amaqz=0.006. We use
the tseriesChaos package of R software to estimate the largest Lyapunov exponent.
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Correlation Dimension
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Embedding Dimension

Fig. 6. Correlation Dimension of EURO STOXX index, D2=1.8. We use the

Grassberger-Procaccia method implemented in Visual Recurrence Analysis Soft-

ware, http://nonlinear.110mb.com/vra/.

underlying process involving in time series under examinantion. This differ-
ent behavior may be a reflection of the various marketing strategies adapted
by different countries during the dynamic financial evolution.
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Abstract. Even if noise titration cannot be used to prove the presence of chaos,
it can still be used to detect nonlinear component in dynamics. Nevertheless, since
the technique is based on nonlinear models for one-step-ahead predictions, it re-
quires an acute choice of modelling parameters, that is the number of terms and
the nonlinearity degree of the models. Based on illustrative examples, we propose
conditions under which the noise titration can be reliably applied to characterize
nonlinearity governing the dynamics underlying the measured time series. More-
over, we found that investigating nonlinear dynamics in the entire phase space or
in a Poincaré section does not necessarily lead to similar results.

Keywords: noise titration technique, time series analysis.

Identifying chaotic dynamics from biological data still remains a great
challenge, mainly because it requires a conclusive proof for a global deter-
minism governing the whole system, that was never provided until now (Glass
[1]). To overcome this difficulty, a technique to identify and to quantify chaos
from short time series was proposed by C.-S. Poon and M. Barahona [2].
Unfortunately, the so-called “noise titration technique”, based on the com-
parison between one-step-ahead predictions given by linear and nonlinear
models, is not always able to distinguish some coloured noise from a purely
deterministic chaotic dynamics (Freitas et al. [3]). Thus this method is not
able to provide a conclusive proof of a chaotic behaviour. Nevertheless it can
still be used to detect a nonlinear process — deterministic or stochastic —
which governs the dynamics. In fact, this technique was used to discriminate
healthy subjects from patients suffering from different cardiac failures, by
comparing the strength of the nonlinearity underlying the data (Freitas et
al. [4]). On the other hand, the results obtained with the noise titration ap-
plied to some spontaneous respiratory dynamics (Fiamma et al. [5]), or some
breathing patterns of patients assisted by mechanical ventilation (Mangin et
al. [6]), remains valid if one ignores the references to chaos in the conclusions.
Nevertheless, this technique has to be applied according to some precautions,
relative to the sampling of the data set, the choice of the modelling parame-
ters, the choice of the observable, and so on. These guidelines are described
section 1.
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When the detection of the nonlinear component (Barahona et al. [7])
is applied, the probability p for having better predictions with a nonlinear
model is computed. A p value greater than 0.99 ensure that the dynamics
is nonlinear, while p around 0.50 means there is no gain to use a nonlinear
model. Nevertheless, in the case of p around 0, encountered in the case of
atrial fibrillation (Freitas et al. [4]), it is not so clear which kind of dynamics
can lead to such results. We therefore propose to check whether relaxation os-
cillations could not be a good candidate to understand this case. Relaxation
oscillations were already observed on a cellular scale (Tyson and Kauffman(8],
Guevara et al. [9]) but also on the scale of a whole organism, considering
physiological (Van Der Pol [10]) or biological (Barlow [11]) rhythms, or even
on a collective, behavioural approach (Liu et al. [12]). These oscillations can
present a fast increase of their amplitude, followed by a slow relaxation to
a basis value. Typically, the slow part can be reproduced by a linear pro-
cess, while the fast dynamics is controlled by a nonlinear process, driving
notably the amplitude fluctuations. This type of dynamics is hard to anal-
yse, because of its intrinsic dual behaviour. In order to better understand
the phenomenon, we built a caricature of relaxation oscillations, based on
periodical oscillations whose amplitude is modulated by the logistic function.
The time series provided is a pathological case for data analysis, due to the
fact that the nonlinearity only acts by very brief impulses. We showed that
the nonlinearity detection, proposed in Barahona et al. [7], failed to detect
the nonlinear component of this so-built dynamics.

1 The noise titration technique

The noise titration technique (Poon and Barahona [2]) is conditioned by
a nonlinearity detection based on estimations of one-step-ahead polynomial
predictors (Barahona and Poon [7]). Once this detection achieved, and only if
a nonlinearity is detected (p > 0.99), the noise titration is applied. A white
Gaussian noise is then gradually added to the data, until the nonlinearity
goes undetected according to the predictors. These two steps are detailed in
the following two subsections.

1.1 Detecting nonlinearity

A time series {y,, }Y_, is investigated by comparing one step ahead predictions
obtained with linear and nonlinear parametric models. These models are not
built to reproduce the global dynamics but only to be optimal for one-step-
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ahead predictions. The general form of these models is:

gn(da M) = ap + a1 Yn—1 + az Yn—2 + ...

+ak41 yﬁ_l + Qxi2Yn—1Yn—2 + ... tapm—1 yfb—fg
M—-1

= Z A Zm (1)
m=0

where {z,,(n)}M_,, M € N, is the functional basis made of all distinct com-
binations of delay coordinates {y,—_x};_;, ¥ € N, up to the maximum allowed

degree d. There is thus M = (&Tj;! terms. The models are thus defined by
the two parameters d and M, from which the order s of the model can be
obtained. For a linear model (d = 1), k = M — 1.

Coefficients a,, of model (1) are estimated using a least squares technique

in order to minimize the squared prediction error

(1)

N
(gn - yn)2
== (2)
N
> (n —7)?

1
wherey = — Zﬁle Yn. This error was used to assess the quality of the model

from the one-step-ahead prediction point of view. This error can be also
used for selecting the most important term in the model as follows (Chen et
al. [13]): The maximum squared prediction error max(e?) is achieved when
no terms are included in the model, that is, when M = 0. In this case,
€2 = max(e?) = 1. The inclusion of the nth term in the auxiliary model
(1) induces a reduction in €. Expressing this reduction as a percentage of
max(€?) yields the error reduction ratio (ERR) (Chen et al. [13]). The terms
with large ERR values are thus selected to form the model.

Among each class of models parametrized by (d, M), we retained the best
nonlinear model (8, my,;) where § < d, and m,; < M, which was compared to
the best linear model parametrized by (1,m;) selected among (1, M) models.
Obviously m; < M. Thus, when we assess the performance of a nonlinear
model (d, M), this always means that the performance of the best nonlin-
ear model (4, m,,;) for one-step-ahead predictions is compared to the perfor-
mance of the best linear model (1,m;). For short, we will say that models
parametrized by (d, M) are tested.

Once the best linear (1,m;) and the best nonlinear (§, m,;) models are
selected, the null hypothesis (the best linear model) is then tested against
the alternate hypothesis (the best nonlinear model) using the non-parametric
Mann-Whitney statistical test. So the probability p for the best nonlinear
model to provide better one-step-ahead predictions than those provided by
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the linear model is calculated. When the probability p is around 50%, this
means that there is no advantage to choose a nonlinear model rather than a
linear one. Nevertheless, when p is greater than 99%, a nonlinearity — or a
nonlinear component — is detected among the data, and the noise titration
can then be applied.

1.2 Noise titration

To titrate the noise in a time series, a Gaussian distributed white noise v,, of
the same standard deviation as y,, with increasing amplitude A (0 < A < 1) is
added to the data until its nonlinearity goes undetected (within a prescribed
level of statistical confidence). If the nonlinearity detection persists to be
conclusive, parameter A is increased. This process continues until the p-
value goes under the threshold of 0.99. The corresponding noise amplitude
A defines the Noise Limit (Np).

We would like to insist on the fact that this nonlinearity test is actually
able to detect nonlinear relations between two states of the system delayed
in time, using models which were selected only to ensure good one-step-
ahead predictions. This not necessarily involves an underlying determinism
(Freitas et al. [3]), since one-step-ahead prediction cannot provide such a
proof (Dafilis et al. [14]).

1.3 Recommendations for an optimal use

We showed that the results provided by the noise titration technique could
strongly depend on some modelling parameters on one side, or to the time
series on the other side (Roulin et al. [15]). The modelling parameters d
and M cannot be chosen too small or too big, because it could leads to false
results. We showed some examples where wrong negative and wrong positive
answers can be obtained (Freitas et al. [4]), and such a feature is our main
argument to ban the use of the noise titration to proove the chaotic nature
of a dynamics. The nonlinearity degree has to be at least equal to 3, and the
number of terms at least equal to 20 or 30, but it should not exceed 100, to
avoid over parametrization. On the other hand, the noise limit is sensitive to
the noise realization used for the titration. It becomes necessary to consider
a mean value of several titrations (we recommend at least 5 titrations). We
also showed (Roulin et al. [15]) that the choice of the variable describing the
dynamics may affect the results according to the observability coefficients
(Letellier and Aguirre [16]). Indeed, there are better variables than others
to investigate a dynamics, and the noise titration is sensitive to that choice,
as many other techniques. Moreover, we found that investigating nonlinear
dynamics using a trajectory in the phase space or using a Poincaré section
does not necessarily lead to similar results (Letellier [17]).

Finally, when the probability p is equal to 0.50, this means that the choice
between a linear and a nonlinear model is not obvious, and that the pertinence
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of both types of models is equivalent. When p is above 0.99, the use of a
nonlinear model is required to describe the one-step-ahead dynamics, and we
conclude about the underlying nonlinearity of the system. If p is about 0, in
principle, the dynamics is mainly linear, but this was never proved. So we
wanted to test this last case.

2 Slow/fast dynamics with chaotic amplitude
modulation

The nonlinearity detection applied on cardiac data revealed different kinds of
dynamical behaviour for patients suffering from congestive heart failure (p ~
1), for others suffering from atrial fibrillation (p & 0), and for healthy patients
(p = 0.75) (Freitas et al. [4]). Surprisingly, the nonlinearity detection seemed
to show that the cardiac dynamics was strongly linear in the case of atrial
fibrillation, as revealed by the very low p-values (Fig. 1).

g H;wv\uHmHmmmmmw

Time (hour)

Fig. 1. Probability p calculated from ARR,, = RR,+1 —RR,, for 5 patients suffering
from atrial fibrillation. Modelling parameters: (d, M) = (3,50). From Freitas et al.
[4].

We consider here the time series generated by a periodic behaviour, whose
amplitude is modulated by the logistic function in a chaotic regime. The
periodic component corresponds to a triangular signal, for which the linear
decrease is slow in comparison to the fast increase. Indeed, only one iteration
is sufficient to reach the maximal amplitude of the ith cycle, given by:

A= (1+5) (3)

where n gives the number of iterations in one oscillation and y; is a solution
of the logistic function

Y1 = 1Y (1= Yn) - (4)
The time series {xy} is then built according to

A 50
Tp— — Sl
T =" n k (5)
A; si xp <0.
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where i = [%] To each cycle ¢ corresponds only one A; value; the oscillation

period remains constant, and does not depend on the amplitude value, which
is varying between two successive cycles. A typical time series is shown Fig.
2.
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Fig. 2. Time series of the slow/fast dynamics with chaotic amplitude modulation.
Parameter values: p = 3.9 and n = 20.
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This time series is mainly governed by the linear behaviour defined by
the first equation of process (5). But, very briefly, a nonlinear component
drives the amplitude of the signal. From the time series point of view, the
system is mainly linear, but a first-return map to a Poincaré section provides
a parabola similar to the logistic function’s hallmark (Fig. 3).
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Fig. 3. First-return map of the slow/fast dynamics with chaotic amplitude modu-
lation. Parameter values: p = 3,9 and n = 20.
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2.1 Results

The nonlinearity detection technique described in section 1 was then applied
to the time series {z)}. The modelling parameters were chosen as (d, M) =
(3,50), and a mean value over 5 detections is computed for each p value. We
observed that the probability p for the best nonlinear model to be better for
the one-step-ahead prediction than the best linear model were always equal
to 0. This value never changed when we varied the number « of relaxation
oscillations in the data’s window considered for the detection. We tested
the nonlinearity for a time series where n = 20 and o > 12, that is, a
window of 240 points for the models estimation. Even if a@ was equal to 30, p
remained around zero. This means that the nonlinear component was acting
too sporadically to be detected on the basis of one-step-ahead predictions.
Typically, a linear model would furnish a bad prediction only during the
stiff increase of the amplitude. But larger n is, less the error weight on the
statistics, and since with n = 20 the technique already failed to detect the
nonlinear component, this remain true for layer n.

The so-built time series is then presented as a “pathological” case: since
the nonlinearity acts on very brief impulses, the noise titration technique
fails to detect the nonlinear component of the dynamics, and only shows its
linear component. However, we noted that if the problem was approached
in a Poincaré section, p values were always equal to 1, as it was observed
with the logistic function, evidencing the presence of a nonlinear component.
This example was certainly a caricature, but it showed the non-equivalence
to work in the phase space, or in a Poincaré section. Such a difference was
already revealed while estimating a Shannon entropy (Letellier [17]).

3 Conclusion

In addition to the guidelines we provided to carefully use the nonlinearity
detection, we showed here that using the nonlinearity detection to search for
a nonlinear component failed when the time series results from a dynam-
ics where the nonlinearity only acts very briefly. Our caricatural dynamics
appeared to be a typical case to test the robustness of any analysis. In addi-
tion, the non-equivalence to analyse a trajectory in the phase space and in a
Poincaré section is once again confirmed here, for the nonlinearity detection
in particular.

References

1.L. GLaAss, Introduction to controversial topics in nonlinear science: Is the heart
rate chaotic?, Chaos, 19, 028501 (2009).

2.C.-S. PooN & M. BARAHONA, Titration of chaos with added noise, Proceedings
of the National Academy of Sciences (USA), 98, 7107-7112 (2001).

477



Proceedings, 4™ Chaotic Modeling and Simulation International Conference
31 May — 3 June 2011, Agios Nikolaos, Crete Greece

3.U. S. FREITAS, L. AGUIRRE & C. LETELLIER, Failure for distinguishing coloured
noise from chaos by the “Noise titration” technique, Physical Review E., 79,
035201 (2009).

4.U. S. FrEITAS, E. ROULIN, J.-F. MUIR & C. LETELLIER, Identifying determinism
underlying heart rate: the right task?, Chaos, 19, 028505 (2009).

5.M.-N. Fi1ammA, C. STrAUS, S. THIBAULT, M. Wysocki, P. BACONNIER & T.
SiMiLOWSKI, Effects of hypercapnia and hypocapnia on ventilatory variability
and the chaotic dynamics of ventilatory flow in humans, American Journal
of Physiology-Regulatory Integrative and Comparative Physiology, 292, R1985-
R1993 (2007).

6.L. MANGIN, M.-N. Fiamma, C. STrRAUS, J.-P. DERENNE, M. ZELTER, C.
CLERICI & T. SIMILOWSKI, Source of human ventilatory chaos: Lessons from
switching controlled mechanical ventilation to inspiratory pressure support in
critically ill patients, Respiratory Physiology € Neurobiology, 161 (2), 189-196
(2008).

7.M. BARAHONA & C.-S. POON, Detection of nonlinear dynamics in short noisy
time series, Nature, 381, 215-217 (1996).

8.J. TysoN & S. KAUFFMAN, Control of mitosis by a continuous biochemical oscil-
lation: synchronisation: spatially inhomogeneous oscillations, Journal of Math-
ematical Biology, 1, 289-310 (1975).

9.M. R. GUEVARA, L. GLASS & A. SHRIER, Phase locking, period-doubling bifurca-
tions, and irregular dynamics in periodically stimulated cardiac cells, Science,
214, 1350-1353 (1981).

10.B. vaN DER PoL, Biological rhythms considered as relaxation oscillations, Acta
Medica Scandinavica, 103 (S108), 76 (1940).

11.J. S. BARLOW, A phase-comparator model for the diurnal rhythm of emergence
of Drosophila, Annals of the New-York Academy of Science, 98, 788-805 (1962).

12.W. Liu, D. X1a0 & Y. Y1, Relaxation oscillations in a class of predator-prey
systems, Journal of Differential Equations, 188, 306-331 (2003).

13.S. CHEN, S. A. BiLLiNGs & W. Luo, Orthogonal least squares methods and
their application to non-linear system identification , International Journal of
Control, 50 (5), 1873-1896 (1989).

14.M. P. Darinis, N. C. SiNcLAIR, P. J. CapuscH & D. T. J. LiLEY, Re-
evaluating the performance of the nonlinear prediction error for the detection
of deterministic dynamics, Physica D, 240, 695-700 (2011).

15.E. Roulin, U.S. Freitas and C. Letellier. Working conditions for safe detection
of nonlinearity and noise titration. Physical Review E, in press.

16.C. LETELLIER & L. A. AGUIRRE, Graphical interpretation of observability in
terms of feedback circuits, Physical Review E, 72, 056202 (2005).

17.C. LETELLIER, Estimating the Shannon entropy: recurrence plots versus sym-
bolic dynamics, Physical Review Letters, 96, 254102 (2006).

478



Proceedings, 4™ Chaotic Modeling and Simulation International Conference
31 May — 3 June 2011, Agios Nikolaos, Crete Greece

“Quantum” Chaos and Stability Condition of Soliton-like Waves

of Nuclear Burning in Neutron-Multiplicating Media

V.D. Rusov'? E.P.Linnik}, V.A. Tarasov!, T.N. Zelentsoval,
V. Sharf!, SA. Chernezhenko', O.A. Byegunova®?,

'Odessa National Polytechnic University, 65044, Odessa, Ukraine
“Bielefeld University, D-33615, Bielefeld, Germany

Abstract

We show that the stabilitgondition for the soliton-like wave of nuclear burgiin
neutron-multiplicating medium is determined in gehdy two conditions. The first condition
(necessary) is determined by relationship betwéenequilibrium concentration and critical
concentration of active (fissile) isotope, that asconsequence of the Bohr-Sommerfeld
quantization condition. The second condition (igfnt) is set by the so-called Wigner quantum
statistics, or more accurately, by a ststistichefGaussian simplectic ensembles with respect to
the parameter that describes the squared widthuofingy wave front of nuclear fuel active

component.
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[. INTRODUCTION

In spite of obvious efficiency and allurement oé thuclear power engineering of next
generation, the main difficulties of its perceptiare predetermined by non-trivial properties
which future ideal nuclear reactor must possesdirgt; the natural, i.e. unenriched uranium or
thorium must be used as a nuclear fuel. Secondéyredactivity regulation system of reactor by
traditional control rods is completely absents, foutall that a reactor must possess the property
of so-called inner safety. It means that the a@itistate of reactor core must be permanently
maintained in any situation, i.e. the reactor ndropeeration is automatically maintained not as a
result of operator activity, but by virtue of phgai reasons-laws preventing the explosive
development of chain reaction by the natural wagufatively speaking, the reactor with inner

safety it is “the nuclear installation which neesiplode”[1].

22 (n,p) - 20 08 - 2NpO 8 - °Pu(n, fission) (1)

Strangely enough, but reactors satisfying such wedugquirements are possible in the
reality. For the first time the idea of such reactwas proposed by Feoktistd\2] and
independently by Teller, Ishikawa and Wd&4§l

The main idea of reactor with inner safety congistthe selection of fuel composition so
that, at first, the characteristic tinmgof the nuclear burning of fuel active (fissile) gooment is
substantially greater than the characteristic tohdelayed neutrons production and, secondly,
necessary self-regulation conditions are meet dutie reactor operation (that always take place,

when the equilibrium concentration;, of fuel active component is greater than critical

concentratiomgi; [2]). These very important conditions can practicallyays to be attained, if
among other reactions in the reactor the chain umear transformations of the Feoktistov

uranium-plutonium cycle typg2]

22 (n,p) -0 08 - 2NpO 8 - °Pu(n, fission) (1)
or the Teller-Ishikawa-Wood thorium-uranium cyglpe|[3]

22Th(n, ) - 23Paml £ - 23U (n, fission), )

will be enough appreciable.
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In both cases the produced fissile isotope&*®fu or***U are the active components of

nuclear fuel. The characteristic time of such neacti.e. the time of propef-decays, is
approximately equal tag =2.3/In2<3.3 days for reaction (1) angt =39.5 days and for reaction
(2), that is several orders greater than the tihtkelayed neutrons production.

The self-regulation of nuclear burning processtigutated by the fact that such system
left by itself can not pass from a critical staberéactor acceleration mode, because a critical
concentration is bounded from above by the finig@ildrium concentration of nuclear fuel

fissile component (plutonium for (1) or uranium f(®)), i.e.n;;> neir (Feoktistov's stability

condition [2]). On phenomenological level the selfiulation of nuclear burning is manifested as
follows. The increase of neutron flux due to soraasons will result in the rapid burnup of
nuclear fuel fissile component (plutonium for () wanium for (2)), i.e. its concentration as
well as the neutron flux will decrease, while trewnnuclei of corresponding fissile component
of nuclear fuel are produced with the same gerwmratite during timag. And vice versa, if the
neutron flux is sharply decreased due to exterombm the burnup rate decrease too, and the
accumulation rate of fuel fissile component will inereased as well as the number of neutron
production after a whileg.

However, as is knowr2], the Feoktistov stability condition is only necass but
insufficient condition. Therefore full generalizati of the Feoktistov stability condition for

critical waves of nuclear burning in neutron-multpting mediums is the purpose of this paper.

Il. PROPERTIES OF STABILITY CONDITION FOR CRITICAL WAVE
OF NUCLEAR BURNING ACCORDING TO FEOKTISTOV

Following [2], let us consider the knowlipolygon” system of kinetic equations for

neutrons and nuclei in the reaction chain (1) wébpect to the normalized autowave variable

Z=(x+ut)/L:
EaE :
% = ~[n, = ng =Ny, Jne, (4)
% =(ny =Ny )n, —ny, )
NE ©

481



Proceedings, 4™ Chaotic Modeling and Simulation International Conference
31 May — 3 June 2011, Agios Nikolaos, Crete Greece

whereu is phase velocity of the steady running wavés the neutron average diffusion length,

n{zt) is the neutron densit=u/3== L% 1 is neutron diffusion constantn”S™; v is neutron
velocity in the one-group approximatioomS™; s is neutron microscopic scattering cross-
section,cm™; 7 =13/u> gL N; is neutron lifetime in mediums; A= uzz /L is dimensionless
constant, n’% =N, /Ng(-) = = Za;ni)/(v -1)o is the plutonium relative critical
concentrationNgi; is the plutonium critical concentratioNg is the #*® concentrationgzand &
are the microscopic neutron capture cross-sectidnfiasion cross-section, respectivety,and

ny are the concentrations of £fand > normalized to &*initial concentration, i.e., tblg(-oo),
vis the average number of prompt neutrons produeeg@lptonium nucleus fission.

Solving these equations Feoktistov was based omrhgy of diffusion equation and
the Schrddinger steady-state equation in quassiciasapproximation [2]. Naturally, in this case
(see Eg. (3)) the stationarity condition of solatie satisfied integrally, because there are points
where np, > Ny and there are points whemg, < nqi.. In this sense, the region &, > Ngit
corresponds as it were to allowed region, whilerggon atnp, < Nyt corresponds to subbarrier
region. In other words, the inverted profile of olnium concentration in thé°U medium plays
the role of potential well (Fig. 1(a) [4]).

In the region at front of wave E—») the approximate solution looks like

n=Cexpz, (7
Ng = ex;{—%expzj, (8)
Ny = expz, 9)
Np, = Mo |1 exg - Cj expz||. (10)
1+A Afiy,

Let us remind that obtaining this solution, we haeglected summanas andnp, whose
values are determined by edge conditighll. Then assuming that the subbarrier region ends at
z=0, we havep, = nyj; at this point. This allows us to determinate theigadf constant C. At the

point z=a, according to the Bohr-Sommerfeld quantization ctodj we have the following

a

Npy T

Do _1g7=7 (1)
|\ om 18275
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where the integral is taken over the supercritieglon Qp>ncit). At the same time condition
(11) plays also the role of condition for findifgetpointa atnp, = Ngit, i.€., When the transition
into subbarrier region happens due to burn-up Fsgel(a) and Fig.2)

Executing the ordinary for quasi-classical approxioralinkage with the supercriticality
region (p,>ngit) we will come to calculation of.

As a critical state is automatically maintaineaat> ngi; [2] (that is the direct
consequence of the Bohr-Sommerfeld quantizationlition), we can use this fact for

generalization of the following inequality:

ﬁPu > Npy > ng?t’ (12)
Thus, Feoktistov shown for the first time [2] thiag tsoliton-like propagation of neutron-

fission wave of nuclear burning is possibléifuU medium only under the condition of a certain

ratio between equilibrium and critical plutonium ncentrations (p, >Nei)), Which is

characterized by the Bohr-Sommerfeld quantizatiemddion. In other words, only in this case
the critical (quasi-stationary) state of systena¢ter core) can automatically maintained without
any external intervention, and, consequently, omly this case the reactor fully and
unambiguously possesses the inner safety properties

It is appropriate here to pay an attention to vergortant Feoktistov’'s parameter, which,
as shown below, is basis for ideology of the siighilf soliton-like wave of nuclear burning:

A =%, (13)

wherea is the width of permitted range of integration e tBohr-Sommerfeld condition (11),
where the inequalitylpy > neit (Fig. 2) andng, > ngit,, respectively,are satisfied;A(a) is
dimensionless coefficient, which appears within fiaenework of simplified diffusion model of
the Feoktistov reactor (3)-(6).

! Note that the model calculations of the Feoktigtoeblem by the system of equations (3)-(6) really
show[4] that at steady-state conditions the Bohr-Somnebdelantization condition is fulfiled with an
accuracy up to a few percents (!!!). Authors [4jenthat there are no grounds to expect the maaete
coincidence because a quantization condition feeldevel is approximate.
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Obviously, Eq. (11) due to its physical meaning kseg factor which predetermines the

phase velocity of soliton-like burning wave. Theref this equation exists regardless of an
idealization degree of reactor core model and gshapbear in explicit or implicit form in any
model whose the system of kinetics equations foitrnas and nuclei has soliton-like solutions
for neutrons. At the same time, as the averagehwaditsoliton wave has an order df,2the
maximum values of the dimensionless coefficiAfi) and wave velocity are determined by

the following approximate equality

1 umaxrﬁ
—N__(a)= =1, 14
b max( ) bl_ ( )

where coefficient i®~2 although a final estimation will be done below.

From analysis of Eq. (14) it follows that the vetgpof stable propagation of soliton-like
wave is not necessarily equal to the diffusion tedle/ 75 . It can be considerably slower or faster
due to very strong domination either of the nordnity parameter or dispersion parameter,
which in its turn reflects the peculiarities of fear transformation kinetics, for example, in the
chain (1) and/or in (2). In practice they maniféself as higher or lower degree of fuel burn-up.

In other words, when the wave velocity and consetiyehe degree of fuel burnup are
low, the wave stops due to the following reasorsuthbns from an external source, which take
place in the initial stage of wave initiation, buont the plutonium on medium bondary and
simultaneously transmute the uranium iRtANp. Neptunium with time starts to produce the
plutonium but it can not create the required higimaentration, while thé**Pu production
decreases due to the uranium burnup. More and tharle layer without bottf**U and *%u
grows on the medium boundary. The neutron diffusfopugh this layer does not provide the
increase of plutonium concentration in next layarg] the wave does not arise evenpg(x,0)=
Nerit-

Conversely, when the wave velocity and degree eff furn-up are high, the wave stops
also because of the scarce (or more exactly, déJgyl@tonium production which takes place
due to another reason. Figuratively speaking, ifoation resembles the fire in the forest under
strong wind, when only tree crowns burn. When tiedvepeed increases, it could extinguish the
fire at all. We have the similar situation, whemr#h is a velocity, at which in the early stage
(whenx=0) the front of neutron soliton wave outruns thenfrof plutonium production wave,
and this advance exceeds the neutron diffusiontterithis leads, in fact, to transformation of
fast wave into slow wave or to its full stop. Itirgeresting to note that this case not studied in

the literature (with the exception of [4,5]), buitis possible to postulate that it corresponds to
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some hypothetical situation, when the nuclear mgmvave forms in highly-enriched fuel which

has the ultra-low critical concentration of fuedsile component.

Thus, the lag (Fig. 1(b)) or advance of neutron wiawet relative to the plutonium wave
front for a distance considerably exceeding thetmeudiffusion length will leads to stop and
total degradation of these waves. This means thgitadation of waves with very low or very
high initial phase velocity will exhibits as thentkency to zero of Eq. (11) at very low or very
high values of. Therefore taking into account Eq. (14), we can amtelthat Eqg. (11) is true in
the range 8(1/b)\(a)<1. Based on this generalization, we can make arrtapt assumption
that the expression (I)/\(a) means the certain probability density distribntaga) with respect
toa

Uty _

oL p(a). (15)

Let us consider and substantiate the type and praperties of such a statistics, and also
show the results of its verification based on thevkn computational experiments on simulation

of nuclear burning wave in theBu (1) and ThU (2) fuel cycles.

[ll. CHAOS AND INTEGRABILITY IN NONLINEAR DYNAMIC
OF REACTOR CORE

In order to solve the assigned task we use the Rnamalogy between the neutron
diffusion equation and the Schrodinger steady-staggation in quasiclassical approximation.
We would remind that this analogy was used eatdiesolve the system of kinetics equation for
neutrons and nuclei (3)-(6) in the reaction chanaf the U-Pu fuel cycle. Since the system of
equations for neutrons and nuclei in the-Uhfuel cycle (2) is structurally identical to the
system equation for the {Pu fuel cycle (1), the computed “quantum mechahisalution,
which describes the statistics (15), will be gehfmaboth fuel cycles, except for a few details.

Now, let us remind that earlier we have used thérrEBommerfeld quantization
condition which in the case of the one-dimensi@yastems determines in the explicit form the

energy eigenvaluds,
§ POk = §2m(E, -V (x)dx = 2m(n+%j, n=012., (16)

wherem andp(x) are the mass and momentum of particle in thel fidélsome smooth potential
V(X).

485



Proceedings, 4™ Chaotic Modeling and Simulation International Conference
31 May — 3 June 2011, Agios Nikolaos, Crete Greece

For the Feoktistov nearly integrable system ofdhaations (3)-(6) or for the anologous

Teller system of equations, for which it is assurttedm=1/2,V(x)=1 andn=0, this condition is

applied in the form

17

where indexfis denotes the fissionable isotope, for example,*tfeu in the Feoktistov £Pu
fuel cycle (1) or thé*U in the Teller TRU fuel cycle.

However, in describing the real evolution of fastator core, the corresponding systems
of equations for neutrons and nuclei are nonintagralmost without exception. This, in its turn,
means that according to the Kolmogorov-Arnold-Mostereorem [6,7] quasiclassical
quantization formulas are inapplicable for the sggtwhere the motion in phase space is not
limited by multidimentional tori. This is stipulatedy the fact that in the Hamiltonian
nonintegrable systems the more and more numberomfcbllapse in phase space with
perturbation (nonintegrability) growth. As a resuhe trajectories of majority of bound states
gets entangled, the motion becomes mainly chaatid, bound states themselves and their
energies, can not be described by the rules oficaasical quiantization, for example, such as
the Einstein-Brillouin-Keller (EBK) quantization mulfor multidimentional case [7,8], which
generalizes the Bohr-Sommerfeld quiantization riNete that nowdays a notion “quantum
chaos” is included the circle of problems relatedjtiantum-mechanical description of systems
chaotic in a classic lim[®9, 10].

Since the results of random matrices theory wilubed for research of chaotic properties
of the statistics (11), we first give an overvieftloe main concepts of this theory.

First, following [9,10], let us shortly considernature of so-called universality classes
and the Gaussian ensemble types. As is known, #miltdbn operator matrix in possession of
any kind of a symmetry can be reduced to the btbagonal form. At the same time, matrix

elements in each block are specified by a certaantym number set. For the sake of simplicity

we assume that the Schrodinger equatidqdy/ot) = I—]zp is expressed for states belonging to

the one block. At the same time the size of theraipel—] matrix is finite and equal to an integer.
As shown in [9,10], these universality classes s#paphysical systems into groups
according to their relation to orthogonal, unitamysimplectic transformation, which leave the

A

H matrix invariant. In other words, as it postulatedo]:
» the Hamiltonian of spinless system possessingyranmgetry with respect to time

inversion is invariant under orthogonal transforiorad and can be represented by real matrix;
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» the Hamiltonian of spinless system not possesairgymmetry with respect to time
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inversion is invariant under unitary transformasoand can be represented by the Hermitian
matrix;

 the Hamiltonian of the system with spin of 1/Zpessing a symmetry with respect to
time inversion is invariant under simplectic tramsfiations and can be represented by
guaternion real matrix.

Now let us talk about the Gaussian ensembleselfhtrix element distribution function
is invariant under one of indicated transformatjadhss means that the sets of all matrices with
elements described by these distribution functioren the Gaussian orthogonal ensemble
(GOE), the Gaussian unitary ensemble (GUE) and@hassian simplectic ensemble (GSE),
respectively.

At the same time it should be noted the one vebgstsntial detail. The matrix element
distribution function of the Gaussian ensembles cam be directly measured, since the
experiment can give us information about the enérggls of investigated quantum-mechanical
system only. In other words, just the energy eigims distribution function is of greater
interest from the practical point of view.

Derivation of corresponding equations for the cdesed types of the Gaussian
ensembles can be found in [10]. At the same tilme cbrrelated distribution function of energy

eigenvalues it is possible to write down in thdisigntly universal form for all ensemble types :

P(E;,-Ey) = [](E. ~Ey)’ expCAY EZ), (18)

n>m n

wherev is an universality index, which takes on the valti¢, 2 and 4 for GOE, GUE and GSE
statistics, respectively. Ar=0 energy eigenvalues are not correlated. In thgecthe energy
level spacing distribution function is describedtbg Poisson statistics, and the matrix ensemble

itself is called the Poisson ensemble.
So long as the energy level spacing distributiarcfion is the most studied property of
chaotic systems, following [9], we give a calcwationly for relatively simple case of the

Gaussian ensemble with matrixes22in size. Let us calculate the energy level sgacin

distribution functionpw(s) substituting the functioR(E;, E) in (18):

Pu () = [dE, [dE,P(E,,E,)3(s~|E, ~ E,)) =
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=C [ dE, [dE,|E, - E,|" expt-AY_ E2)d(s~|E, - E,)). (19)

Constant® andC are defined by the two normalization conditions:

T py (s)ds=1, (20)

Tspw(s)dszl. (21)

The first condition is normalization of the totalopability, and the second condition is
normalization of the average energy level spacintegration of (19) gives us the so-called
Wigner energy level spacing distribution functiondyich correspond to the different Gaussian

ensembles:

Vid T,
—sexp—s°), v =1GOE);
> p(4 ) 1( )

— 32, P - :
Py (S) = ﬂs expf 45 ), v =2(GUE); (22)

8 Vw64,
(m) s" exp( 9_7TS ), vV =4(GSE).

Despite the fact that these functions were obtaiftgdthe Gaussian ensemble with
matrixes X2 in size, they describe with sufficient accurdoy spectra of arbitrary size matrices
[9].

Note that random matrix theory at first was devebbpo find some regularities of heavy
nucleus energy spectra [10,11], but it attracteenkimterest after the Bohigas, Giannoni and
Schmit conclusion [12] that this theory can be ggapto any chaotic system.

We now turn to our problem of determination of istats (15) type and will try to use the

considered statistics properties of the Gaussiaaraehles.

IV. THE WIGNER QUANTUM STATISTICS AND GENERALIZED
STABILITY CONDITION

Now, in the framework of nearly integrable systdmwhich the system of equations

describing the nuclear burning kinetics of the Risbév U-Pu fuel cycle (1) or the Taylor Hu
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fuel cycle (2) belongs, we formally introduce thenérgy” eigenvalue of stationary state as

fis
crit

fis

(N0 / nl®)=Eo and "energy” eigenvalue of quasistationary state(rge / Ny )=Esemi (Where

Eoc>Esni and ny, is the current equilibrium concentration of fissisotope limited from above

by its initial equilibrium concentration, i.en,, <n..). In general case, to describe the wave

mode of nuclear burning, when the reactor is maieth in the near-critical state, we can
consider thaEgsm — 1. Then in the framework of quantum-mechanical @pgl this means that
the evolution of nuclear burning “energy” spectrimnallowed region is described by some
quasi-equivalent two-level scheme (Fig. 3).

Then, for the nearly-integrable system which déssithe nuclear transformation
kinetics for the Feoktistov (1) or for the Tell@) fuel cycle in general case we can use the Bohr-

Sommerfeld approximate condition in the form

£/n—ﬁ'j—1dz-~~ap/E0—Esemi -5 (23)
crit

It follows that, we can postulate one obvious amgartant assertion: by virtue of the
Bohr-Sommerfeld condition (23) the type of the Wignenergy level spacing statistics
unambiguously predetermines the analogous statigpe of parameter, which characterizes the
squared widthd?) of concentration wave front of active (fissile) teral.

Note that we have not any information about theueabf energyE, before the
experiment, whereas it is possible to considerBat = 1. If to add also, that in the steady-state

mode all wave kinetic parameters are predeterminethe initial equilibriumn, and critical

fis
crit

n.. concentration of active (fissile) isotope (whosdues are known before experiment), the

physical meaning and the necessity of followingngea

By —Egn =y |[— -1 24y

become apparent.

It is obvious that the conditions (23) and (24) makpossible to obtain the expression
for parameten;
(25)

u crit

The next step for determining the statistjg&) of Eq. (15) type consists in the

experimental validation of proposed hypothesis. Bat we have compared the Gaussian
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ensemble statistics (22) with the calculated ddtavell-known computational experiments

[4,13-17] and have obtained a good accordancelofileéion data with theoretical dependence,
which is described by the Gaussian simplectic ebgestatistics (see Table | and Fig. 4).
Thus, we can conclude that the wave velocity (¥5predetermined by the following

approximate equality

6
ur, — o \_(_8 4{64zj2n2n§:21

—= 0 =|—=| ajexp ——a’ |, O— 00—, 26
2L pW(a'D) 3\/7_7_ O 9]7_ (| a‘D 4 nPu _ncprlijt ( )
where coefficiento = 2 (see Eq.(15))7z is the delay time caused by active (fissile) isetop
production, which is equal to th@-decay time of compound nuclei in the Feoktistovddjhe
Teller (2) fuel cycle;py, (a, )is the Wigner symplectic statistics.

Thus, based on the verification results of Eq.(2@) can make a conclusion, which
generalizes the physical conditions of existence~@bktistov’'s wave mode: the velocity of
soliton-like wave propagation in neutron-multiplicg mediumin must be determined in general
case by two conditions. The first condition (neeegpis predetermined by relationship between

the equilibrium concentration and critical concatitm of active (fissile) isotopﬁpu / Ngi) >1)

or, more exactly, by the Bohr-Sommerfeld quantaaticondition. The second condition
(sufficient) is set by statistics of the Gaussiempsectic ensembles with respect to the parameter
a, which describes the burning concentration wawtlwof active (fissile) component of nuclear

fuel.

V. COMPUTATION 3D-EXPERIMENT AND VERIFICATION
OF THE WIGNER QUANTUM STATISTICS

Let us consider the simplified diffusion model @utrons and nuclei kinetics in the chain
(1) in the one-group approximation (neutron enasgy 1 MeV) and cylindrical geometry. Then,
taking into account delayed neutrons, the respecdistem of differential equations, which
describes the kinetics of Feoktistov's U-Pu fuelley i.e., the kinetics of initiation and

propagation of neutron-fission waméx, t), is as follows [13]:

an(xt)
ot

= DAnN(xt)+q(xt), 712

where
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a0 ) = [v@- p) - Dt B, TP Ny () + L2
i=1 12

-n(x,t) [, EE > o, IN;(x1) +ia; N, (x,t) + > o, N, (x,t)},

8,9,Pu i=ockonku

GNS_(IXJ) = 0, t(x )& Ny (x.1). (28)
IN,(xt) Ns (x,t) =u, h(xt) &? D\lg(x,t)—iNg(X,t)’ (29)
ot Ts
ONm(xt) _ 1 No (% 1) - v, B(x t) o + 0™ )N, (x,1) (30)
ot Ty
oN; _ p, W, h(xt) P IN,, (xt)- In2MN, , 1=16- (31)
ot Ty

To determine the last terg(x, t) on the right-hand-side of Eq.(27), we use theative

additional neutron absorber approximation:

n(x,t) W, 0 > o, IN; (x,t) =n(x.t) W, g IN(Xt)- (32)

i=ockonku

Taking into account the fact that fission with tivagment formation is most probable,

the kinetic equation foN (x,t) becomes

_ . o
% - 2[1_2 Pi ]Eﬂ(xf[) W, Eﬂ'fu N, (X, t) + N, Iin 2. (33)
i=1

i=1 Y2

Here n(x,t) is the neutron density) is the diffusion constant of neutrons; is the neutron
velocity E, =1 MeV in the one-group approximatiorﬁ; are the concentrations of neutron-rich
fission fragments of th&°Pu nuclei; Ng, No, Np, are the”®U , 2%, #%u concentrationsN,
are the concentrations of rest fission fragmentshef>*Pu nuclei; g, is the neutron-capture

microcross-sectiony; is the fission microcross-sectioryis the nucleus life time with respect to

6
the S—decay;pi( p=2_ p, ) are the parameters characterizing delayed negooups for main
i=1
fuel fissionable nuclides [18].
The boundary conditions for the system of differ@réquations (27)-(31) are
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N(xt) = Po/U,, DX =0, (34)

where®, is the neutron density of plane diffusion souréseutrons which is located on the
boundaryx=0; | is the uranium block length.
An estimation of the neutron flux densty from the external source on the boundary

can be obtained from an estimation of the Pu atitoncentration which is of order of 10%:

A1, 07 Ng(x,txtzoz 01N, (X, t) = (35)

and therefore
D, = 01/47,40%. (36)

Here we note that Eq. (36) is only an estimationgf The results of computational
experiment show that it can be substantially smalleeality.

In general, different boundary conditions can bedusiepending on physical conditions
under which nuclear burning is initiated by the reeuneutrons, for example, the Dirichlet
condition of (36) type, the Neumann condition oe 8o-called third-kind boundary condition,
which summarizes the first two conditions. Use bé tthird-kind boundary condition is
recommended in neutron transport theory [18]. Heeeuse this condition in the simple case
which is known as Milne’s problem, or more pregysélis the linear combination of the neutron

concentratiom(x,t) and its spatial derivativ@n/ox(x,t) on the boundary:
n(0t) - 0.7104n"? (0,t) = 0, 7§13

where) is the range of neutrons and®(0, t)=0n/dx (0, 1).

Although the behavior of the "neutron source-nuclagl" system depends on the
boundary conditions near the boundary, computatierperiments show that in reactor core,
I.e., far from the boundary, the system is asyniqgatly independent of the boundary conditions.
This confirms the independence of wave propagationmeactor volume on the boundary
conditions and parameters of nuclear fuel "ignitidn this sense the problem of determining the
optimum parameters of nuclear fuel "ignition" inelriron source-nuclear fuel” system is a
nontrivial and extraordinarily vital issue, whiobquires a separate examination.

The initial conditions for the system of differealtequations (27)-(31) are
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n(x,t)|x’t:O = dbo/un, n(x,t)|xyt:0 =0; (38)
19
Ns(xlt)tzozﬁzNAzz_gSNA, 139

Ng(xt),0=0, Np,(xt)]_, =0, Ny(xt) =0, N(xt)

t=0

t=0 =0. (40)

wheregs is the density, which is expressed in the unitgl@f>; N4 is the Avogadro constant.

The following values of constants were used forusation:

ot =200 cm*; g} =55010 cm?; (41)
ol =g, =g ™™ = 538107 cm?*; oF =0 = 212110 cm?; (42)
v= 297,083 daysy, =10° cm/s; D = 28010° cn's. (43)

The system of equations (27)-(32) with boundarydations (37)-(35), initial conditions
(38)-(40) and the values of constants (41)-(43poised numerically using the software package
Fortran Power Station 4.0. At the same time wetieeDMOLCH subprogram from the IMSL
Fortran Library. The DMOLCH subprogram solves atexysof partial differential equations of
the formu=f(Xxt,uy,Ux) by the method of straight lines [13, 19]. Theusiohs of diffusion model
of neutrons and nuclei kinetics in the chain (1jha one-group approximation and cylindrical
geomerty are presented in Fig.5.

Verification of the Wigner symplectic statistics ngists in comparison of the
experimental velocity of nuclear burning wave obeal by a computational 3D-experiment with
its theoretical value obtained by Eq. (26). Fos thiurpose we at first find the plutonium critical

fis

concentrationn,; from the profile of space-time evolution of itspeximental concentration
distribution (Fig. 5). It is obvious, that the ahge value of critical concentration approximately
is N7 O 810° cmi®(see Fig. 6(b)). It follows thathe plutonium normalized critical
concentration is

nfis — NPu

crit crit

/Ng4(x,0) = 0.0167, 44}
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where by virtue of Eq.(39) the initial uranium centration isNg(x,0)= 4.7910°? cmi*and the
value ofagis equal to 0.704 by virtue of Eq. (25). In othesrds, the important case whenr<l
takes a place (see Fig. 4).

Taking into account the plutonium normalized edmilim concentratiom . = 0.1, by

virtue of Eq. (26) we have the theoretical valughaf Wigner symplectic probability:
1 s
EA(aD) = py (ay) =0.9303, 54

which corresponds to the velocity of nuclear bugnimave ofumer =2.82 cm/day at known
parameter§=5 cm andrp=3.3 days.

Now we can simply determine the experimental vabhfaesuclear burning wave velocity
and, accordingly, the Wigner symplectic probability Fig. 6(a) the profile of space-time
evolution of experimental concentration distribatiof neutrons is shown. We can see that the
wave crest has covered the distance of 600 cm gltral7 days. So, the velocity of nuclear
burning neutron wave is
=6002170 277 cm/day . (46)

usimul

This, in its turn, corresponds to the value of YAM2p) = p;, (a,)=0.9141.
Thus, the approximate equality of the experimeatad theoretical velocity of nuclear

burning wave e[ Usmi) makes it possible to conclude that the Wignemgua (symplectic)
statistics verified by computing 3D-experiment (&g 4) satisfactorily describes experimental
data characterized by the paramétér).

Here we note that computing experiments show thatconditions of wave blocking,
which describe the degradation and subsequenio$twpve, are predetermined by the degree of
burn-up of the main nonfissionabl@®U) and fissionable?{®Pu) components of nuclear fuel in
front of the wave by neutrons from external sourcéhe initial stage of wave “ignition”. This
process is very important, since the high degrefaelfcomponent burn-up in front of the wave
will inhibit the wave from overcoming this regionst as fire in the steppe can not cross the
plowed in advance stripe of the land. It is obvithet in the initial stage of wave initiation the
degree of fuel burn-up is determined first of allthe energy spectrum and intensity of neutrons
from the external source and by the properties udiear fuel. The most important of these
properties is the delay time of active (fissile) isotope generation due to jfedecay of

compound nuclein the Feoktistov U-Pu fuel cycle (1) or the Telldr-U fuel cycle (2).
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In spite of the general understanding of physiceuwaflear burning wave blocking, it is

% Proceedings, 4™ Chaotic Modeling and Simulation International Conference

obvious that indicated above difficulties in thesdgbing this process testify to nontriviality of
given problem. Unfortunately, the solving of thi®iplem exceeds the scope of this work, but it

will be a subject of future research.

CONCLUSIONS

The solutions of the system of diffusion type edret for neutrons and concomitant
kinetic equations for nuclei obtained by numeri@&-simulation persistently point to the
regions where the stable soliton-like solutionsrfeutrons and solitary wave solutions for nuclei
are existed. This is no wonder for nearly intertgaystems, to which the investigated system of
equations for neutrons and nuclei belongs, whetteagxistence of stable soliton-like solutions
in three spatial dimensions causes a surprisénéofailowing reason.

As is known, the derivation and solution of intdgea nonlinear evolution partial
differential equations in three spatial dimensidres been the holy grail in the field of
integrability since the late 1970s. The celebrdfedteveg-de Vries and nonlinear Schrodinger
equations, as well as Kadomtsev-Petviashvili andeR<Stewertson equations, are prototypical
examples of integrable evolution equations in the and two spatial dimensions, respectively.
Do there exist integrable analogs of these equaiiothree spatial dimensions?

As it has turned out, quite recently, in 2006, thethod for finding of an analytical
solutions of indicated above partial differentiajuations in three spatial dimensions was
developed [20]. Therefore, the natural questioreati “To which from this equations does the
diffusion equation for neutrons correspond, or, beayhis is perfectly a new type of soliton

partial differential equations in three spatial dmsions?”
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TABLE I. The parameters of nuclear burning wave

U-Pu cycle Th-U cycle
Parameter.
References
Present [14] [15] [15] [16] [4] [17] D
paper
ﬁegs_l 0.100 2.585 0.145 0024 0240 010 0071 0.070
nfis 0.017 1.75C 0.08C 0.01t 0.10t 0.05 0.03z 0.03t
crit
an 0.704 2.274 1.743 2.028 1.385 1571 1423 1571

Uneor/Usmi  1030/1012 2.9/3.1 125/130 21/22 622/62@93/331 46/~50 25
[cm/yeaf

“Forecast for the TFHU fuel cycle in infinite medium at 10% enrichmeft&U.
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FIGURE CAPTIONS

FIG. 1. Time dependence of neutron concentralBoopagating wave (a) and locked wave (b):
a segment of the curve p§(z) above the, line is the reactor core; the scalesygfandnp, are

given withax10 magnification [4].

FIG. 2. The schematic view of permitted and sul@sagray colored) region corresponding to
the conditionsnpy > ngit and npy < N, respectively. The delineated by square region is
considered more particularly in Fig. 3.

FIG. 3. Schematic description of the permitted doxbidden region boundaries of nuclear
burning according to the Borh-Sommerfeld conditi@hand the corresponding quasi-equivalent

two-level scheme (b).

FIG. 4. The theoretical (solid line)) and experitan(points) dependence df(a<) on the

parameteps.

FIG. 5. Concentration kinetics of neutrofi&, 2**U and®**u in the core of cylindrical reactor
with radius of 125 cm and 1000 cm long at the twh40 days. Here is transverse spatial

coordinate axis (cylinder radiug)is longitudinal spatial coordinate axis (cylindiemgth).

FIG. 6. (a) - The neutron concentration distribatat the cylinder axis at= 217 days. The wave

velocity iSUsimu = 2,77. (b) - Thé**Pu concentration distribution at the cylinder &gis

Ny, = 0.In7% np, = 0.0167 at = 217 days.

crit
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